001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      https://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.codec.digest;
018
019import java.nio.charset.StandardCharsets;
020import java.security.MessageDigest;
021import java.security.NoSuchAlgorithmException;
022import java.security.SecureRandom;
023import java.util.Arrays;
024import java.util.Random;
025import java.util.regex.Matcher;
026import java.util.regex.Pattern;
027
028/**
029 * SHA2-based Unix crypt implementation.
030 * <p>
031 * Based on the C implementation released into the Public Domain by Ulrich Drepper &lt;drepper@redhat.com&gt;
032 * http://www.akkadia.org/drepper/SHA-crypt.txt
033 * </p>
034 * <p>
035 * Conversion to Kotlin and from there to Java in 2012 by Christian Hammers &lt;ch@lathspell.de&gt; and likewise put
036 * into the Public Domain.
037 * </p>
038 * <p>
039 * This class is immutable and thread-safe.
040 * </p>
041 *
042 * @since 1.7
043 */
044public class Sha2Crypt {
045
046    /** Default number of rounds if not explicitly specified. */
047    private static final int ROUNDS_DEFAULT = 5000;
048
049    /** Maximum number of rounds. */
050    private static final int ROUNDS_MAX = 999_999_999;
051
052    /** Minimum number of rounds. */
053    private static final int ROUNDS_MIN = 1000;
054
055    /** Prefix for optional rounds specification. */
056    private static final String ROUNDS_PREFIX = "rounds=";
057
058    /** The number of bytes the final hash value will have (SHA-256 variant). */
059    private static final int SHA256_BLOCKSIZE = 32;
060
061    /** The prefixes that can be used to identify this crypt() variant (SHA-256). */
062    static final String SHA256_PREFIX = "$5$";
063
064    /** The number of bytes the final hash value will have (SHA-512 variant). */
065    private static final int SHA512_BLOCKSIZE = 64;
066
067    /** The prefixes that can be used to identify this crypt() variant (SHA-512). */
068    static final String SHA512_PREFIX = "$6$";
069
070    /** The pattern to match valid salt values. */
071    private static final Pattern SALT_PATTERN = Pattern
072            .compile("^\\$([56])\\$(rounds=(\\d+)\\$)?([\\.\\/a-zA-Z0-9]{1,16}).*");
073
074    /**
075     * Generates a libc crypt() compatible "$5$" hash value with random salt.
076     * <p>
077     * See {@link Crypt#crypt(String, String)} for details.
078     * </p>
079     * <p>
080     * A salt is generated for you using {@link SecureRandom}.
081     * </p>
082     *
083     * @param keyBytes
084     *            plaintext to hash. Each array element is set to {@code 0} before returning.
085     * @return complete hash value
086     * @throws IllegalArgumentException
087     *             when a {@link java.security.NoSuchAlgorithmException} is caught.
088     */
089    public static String sha256Crypt(final byte[] keyBytes) {
090        return sha256Crypt(keyBytes, null);
091    }
092
093    /**
094     * Generates a libc6 crypt() compatible "$5$" hash value.
095     * <p>
096     * See {@link Crypt#crypt(String, String)} for details.
097     * </p>
098     * @param keyBytes
099     *            plaintext to hash. Each array element is set to {@code 0} before returning.
100     * @param salt
101     *            real salt value without prefix or "rounds=". The salt may be null, in which case a salt
102     *            is generated for you using {@link SecureRandom}. If one does not want to use {@link SecureRandom},
103     *            you can pass your own {@link Random} in {@link #sha256Crypt(byte[], String, Random)}.
104     * @return complete hash value including salt
105     * @throws IllegalArgumentException
106     *             if the salt does not match the allowed pattern
107     * @throws IllegalArgumentException
108     *             when a {@link java.security.NoSuchAlgorithmException} is caught.
109     */
110    public static String sha256Crypt(final byte[] keyBytes, String salt) {
111        if (salt == null) {
112            salt = SHA256_PREFIX + B64.getRandomSalt(8);
113        }
114        return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256);
115    }
116
117    /**
118     * Generates a libc6 crypt() compatible "$5$" hash value.
119     * <p>
120     * See {@link Crypt#crypt(String, String)} for details.
121     * </p>
122     * @param keyBytes
123     *            plaintext to hash. Each array element is set to {@code 0} before returning.
124     * @param salt
125     *            real salt value without prefix or "rounds=".
126     * @param random
127     *            the instance of {@link Random} to use for generating the salt.
128     *            Consider using {@link SecureRandom} for more secure salts.
129     * @return complete hash value including salt
130     * @throws IllegalArgumentException
131     *             if the salt does not match the allowed pattern
132     * @throws IllegalArgumentException
133     *             when a {@link java.security.NoSuchAlgorithmException} is caught.
134     * @since 1.12
135     */
136    public static String sha256Crypt(final byte[] keyBytes, String salt, final Random random) {
137        if (salt == null) {
138            salt = SHA256_PREFIX + B64.getRandomSalt(8, random);
139        }
140        return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256);
141    }
142
143    /**
144     * Generates a libc6 crypt() compatible "$5$" or "$6$" SHA2 based hash value.
145     * <p>
146     * This is a nearly line by line conversion of the original C function. The numbered comments are from the algorithm
147     * description, the short C-style ones from the original C code and the ones with "Remark" from me.
148     * </p>
149     * <p>
150     * See {@link Crypt#crypt(String, String)} for details.
151     * </p>
152     *
153     * @param keyBytes
154     *            plaintext to hash. Each array element is set to {@code 0} before returning.
155     * @param salt
156     *            real salt value without prefix or "rounds="; may not be null
157     * @param saltPrefix
158     *            either $5$ or $6$
159     * @param blocksize
160     *            a value that differs between $5$ and $6$
161     * @param algorithm
162     *            {@link MessageDigest} algorithm identifier string
163     * @return complete hash value including prefix and salt
164     * @throws IllegalArgumentException
165     *             if the given salt is {@code null} or does not match the allowed pattern
166     * @throws IllegalArgumentException
167     *             when a {@link NoSuchAlgorithmException} is caught
168     * @see MessageDigestAlgorithms
169     */
170    private static String sha2Crypt(final byte[] keyBytes, final String salt, final String saltPrefix,
171            final int blocksize, final String algorithm) {
172
173        final int keyLen = keyBytes.length;
174
175        // Extracts effective salt and the number of rounds from the given salt.
176        int rounds = ROUNDS_DEFAULT;
177        boolean roundsCustom = false;
178        if (salt == null) {
179            throw new IllegalArgumentException("Salt must not be null");
180        }
181
182        final Matcher m = SALT_PATTERN.matcher(salt);
183        if (!m.find()) {
184            throw new IllegalArgumentException("Invalid salt value: " + salt);
185        }
186        if (m.group(3) != null) {
187            rounds = Integer.parseInt(m.group(3));
188            rounds = Math.max(ROUNDS_MIN, Math.min(ROUNDS_MAX, rounds));
189            roundsCustom = true;
190        }
191        final String saltString = m.group(4);
192        final byte[] saltBytes = saltString.getBytes(StandardCharsets.UTF_8);
193        final int saltLen = saltBytes.length;
194
195        // 1. start digest A
196        // Prepare for the real work.
197        MessageDigest ctx = DigestUtils.getDigest(algorithm);
198
199        // 2. the password string is added to digest A
200        /*
201         * Add the key string.
202         */
203        ctx.update(keyBytes);
204
205        // 3. the salt string is added to digest A. This is just the salt string
206        // itself without the enclosing '$', without the magic salt_prefix $5$ and
207        // $6$ respectively and without the rounds=<N> specification.
208        //
209        // NB: the MD5 algorithm did add the $1$ salt_prefix. This is not deemed
210        // necessary since it is a constant string and does not add security
211        // and /possibly/ allows a plain text attack. Since the rounds=<N>
212        // specification should never be added this would also create an
213        // inconsistency.
214        /*
215         * The last part is the salt string. This must be at most 16 characters and it ends at the first `$' character
216         * (for compatibility with existing implementations).
217         */
218        ctx.update(saltBytes);
219
220        // 4. start digest B
221        /*
222         * Compute alternate sha512 sum with input KEY, SALT, and KEY. The final result will be added to the first
223         * context.
224         */
225        MessageDigest altCtx = DigestUtils.getDigest(algorithm);
226
227        // 5. add the password to digest B
228        /*
229         * Add key.
230         */
231        altCtx.update(keyBytes);
232
233        // 6. add the salt string to digest B
234        /*
235         * Add salt.
236         */
237        altCtx.update(saltBytes);
238
239        // 7. add the password again to digest B
240        /*
241         * Add key again.
242         */
243        altCtx.update(keyBytes);
244
245        // 8. finish digest B
246        /*
247         * Now get result of this (32 bytes) and add it to the other context.
248         */
249        byte[] altResult = altCtx.digest();
250
251        // 9. For each block of 32 or 64 bytes in the password string (excluding
252        // the terminating NUL in the C representation), add digest B to digest A
253        /*
254         * Add for any character in the key one byte of the alternate sum.
255         */
256        /*
257         * (Remark: the C code comment seems wrong for key length > 32!)
258         */
259        int cnt = keyBytes.length;
260        while (cnt > blocksize) {
261            ctx.update(altResult, 0, blocksize);
262            cnt -= blocksize;
263        }
264
265        // 10. For the remaining N bytes of the password string add the first
266        // N bytes of digest B to digest A
267        ctx.update(altResult, 0, cnt);
268
269        // 11. For each bit of the binary representation of the length of the
270        // password string up to and including the highest 1-digit, starting
271        // from to the lowest bit position (numeric value 1):
272        //
273        // a) for a 1-digit add digest B to digest A
274        //
275        // b) for a 0-digit add the password string
276        //
277        // NB: this step differs significantly from the MD5 algorithm. It
278        // adds more randomness.
279        /*
280         * Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0
281         * the key.
282         */
283        cnt = keyBytes.length;
284        while (cnt > 0) {
285            if ((cnt & 1) != 0) {
286                ctx.update(altResult, 0, blocksize);
287            } else {
288                ctx.update(keyBytes);
289            }
290            cnt >>= 1;
291        }
292
293        // 12. finish digest A
294        /*
295         * Create intermediate result.
296         */
297        altResult = ctx.digest();
298
299        // 13. start digest DP
300        /*
301         * Start computation of P byte sequence.
302         */
303        altCtx = DigestUtils.getDigest(algorithm);
304
305        // 14. for every byte in the password (excluding the terminating NUL byte
306        // in the C representation of the string)
307        //
308        // add the password to digest DP
309        /*
310         * For every character in the password add the entire password.
311         */
312        for (int i = 1; i <= keyLen; i++) {
313            altCtx.update(keyBytes);
314        }
315
316        // 15. finish digest DP
317        /*
318         * Finish the digest.
319         */
320        byte[] tempResult = altCtx.digest();
321
322        // 16. produce byte sequence P of the same length as the password where
323        //
324        // a) for each block of 32 or 64 bytes of length of the password string
325        // the entire digest DP is used
326        //
327        // b) for the remaining N (up to 31 or 63) bytes use the first N
328        // bytes of digest DP
329        /*
330         * Create byte sequence P.
331         */
332        final byte[] pBytes = new byte[keyLen];
333        int cp = 0;
334        while (cp < keyLen - blocksize) {
335            System.arraycopy(tempResult, 0, pBytes, cp, blocksize);
336            cp += blocksize;
337        }
338        System.arraycopy(tempResult, 0, pBytes, cp, keyLen - cp);
339
340        // 17. start digest DS
341        /*
342         * Start computation of S byte sequence.
343         */
344        altCtx = DigestUtils.getDigest(algorithm);
345
346        // 18. repeat the following 16+A[0] times, where A[0] represents the first
347        // byte in digest A interpreted as an 8-bit unsigned value
348        //
349        // add the salt to digest DS
350        /*
351         * For every character in the password add the entire password.
352         */
353        for (int i = 1; i <= 16 + (altResult[0] & 0xff); i++) {
354            altCtx.update(saltBytes);
355        }
356
357        // 19. finish digest DS
358        /*
359         * Finish the digest.
360         */
361        tempResult = altCtx.digest();
362
363        // 20. produce byte sequence S of the same length as the salt string where
364        //
365        // a) for each block of 32 or 64 bytes of length of the salt string
366        // the entire digest DS is used
367        //
368        // b) for the remaining N (up to 31 or 63) bytes use the first N
369        // bytes of digest DS
370        /*
371         * Create byte sequence S.
372         */
373        // Remark: The salt is limited to 16 chars, how does this make sense?
374        final byte[] sBytes = new byte[saltLen];
375        cp = 0;
376        while (cp < saltLen - blocksize) {
377            System.arraycopy(tempResult, 0, sBytes, cp, blocksize);
378            cp += blocksize;
379        }
380        System.arraycopy(tempResult, 0, sBytes, cp, saltLen - cp);
381
382        // 21. repeat a loop according to the number specified in the rounds=<N>
383        // specification in the salt (or the default value if none is
384        // present). Each round is numbered, starting with 0 and up to N-1.
385        //
386        // The loop uses a digest as input. In the first round it is the
387        // digest produced in step 12. In the latter steps it is the digest
388        // produced in step 21.h. The following text uses the notation
389        // "digest A/C" to describe this behavior.
390        /*
391         * Repeatedly run the collected hash value through sha512 to burn CPU cycles.
392         */
393        for (int i = 0; i <= rounds - 1; i++) {
394            // a) start digest C
395            /*
396             * New context.
397             */
398            ctx = DigestUtils.getDigest(algorithm);
399
400            // b) for odd round numbers add the byte sequence P to digest C
401            // c) for even round numbers add digest A/C
402            /*
403             * Add key or last result.
404             */
405            if ((i & 1) != 0) {
406                ctx.update(pBytes, 0, keyLen);
407            } else {
408                ctx.update(altResult, 0, blocksize);
409            }
410
411            // d) for all round numbers not divisible by 3 add the byte sequence S
412            /*
413             * Add salt for numbers not divisible by 3.
414             */
415            if (i % 3 != 0) {
416                ctx.update(sBytes, 0, saltLen);
417            }
418
419            // e) for all round numbers not divisible by 7 add the byte sequence P
420            /*
421             * Add key for numbers not divisible by 7.
422             */
423            if (i % 7 != 0) {
424                ctx.update(pBytes, 0, keyLen);
425            }
426
427            // f) for odd round numbers add digest A/C
428            // g) for even round numbers add the byte sequence P
429            /*
430             * Add key or last result.
431             */
432            if ((i & 1) != 0) {
433                ctx.update(altResult, 0, blocksize);
434            } else {
435                ctx.update(pBytes, 0, keyLen);
436            }
437
438            // h) finish digest C.
439            /*
440             * Create intermediate result.
441             */
442            altResult = ctx.digest();
443        }
444
445        // 22. Produce the output string. This is an ASCII string of the maximum
446        // size specified above, consisting of multiple pieces:
447        //
448        // a) the salt salt_prefix, $5$ or $6$ respectively
449        //
450        // b) the rounds=<N> specification, if one was present in the input
451        // salt string. A trailing '$' is added in this case to separate
452        // the rounds specification from the following text.
453        //
454        // c) the salt string truncated to 16 characters
455        //
456        // d) a '$' character
457        /*
458         * Now we can construct the result string. It consists of three parts.
459         */
460        final StringBuilder buffer = new StringBuilder(saltPrefix);
461        if (roundsCustom) {
462            buffer.append(ROUNDS_PREFIX);
463            buffer.append(rounds);
464            buffer.append("$");
465        }
466        buffer.append(saltString);
467        buffer.append("$");
468
469        // e) the base-64 encoded final C digest. The encoding used is as
470        // follows:
471        // [...]
472        //
473        // Each group of three bytes from the digest produces four
474        // characters as output:
475        //
476        // 1. character: the six low bits of the first byte
477        // 2. character: the two high bits of the first byte and the
478        // four low bytes from the second byte
479        // 3. character: the four high bytes from the second byte and
480        // the two low bits from the third byte
481        // 4. character: the six high bits from the third byte
482        //
483        // The groups of three bytes are as follows (in this sequence).
484        // These are the indices into the byte array containing the
485        // digest, starting with index 0. For the last group there are
486        // not enough bytes left in the digest and the value zero is used
487        // in its place. This group also produces only three or two
488        // characters as output for SHA-512 and SHA-512 respectively.
489
490        // This was just a safeguard in the C implementation:
491        // int buflen = salt_prefix.length() - 1 + ROUNDS_PREFIX.length() + 9 + 1 + salt_string.length() + 1 + 86 + 1;
492
493        if (blocksize == 32) {
494            B64.b64from24bit(altResult[0], altResult[10], altResult[20], 4, buffer);
495            B64.b64from24bit(altResult[21], altResult[1], altResult[11], 4, buffer);
496            B64.b64from24bit(altResult[12], altResult[22], altResult[2], 4, buffer);
497            B64.b64from24bit(altResult[3], altResult[13], altResult[23], 4, buffer);
498            B64.b64from24bit(altResult[24], altResult[4], altResult[14], 4, buffer);
499            B64.b64from24bit(altResult[15], altResult[25], altResult[5], 4, buffer);
500            B64.b64from24bit(altResult[6], altResult[16], altResult[26], 4, buffer);
501            B64.b64from24bit(altResult[27], altResult[7], altResult[17], 4, buffer);
502            B64.b64from24bit(altResult[18], altResult[28], altResult[8], 4, buffer);
503            B64.b64from24bit(altResult[9], altResult[19], altResult[29], 4, buffer);
504            B64.b64from24bit((byte) 0, altResult[31], altResult[30], 3, buffer);
505        } else {
506            B64.b64from24bit(altResult[0], altResult[21], altResult[42], 4, buffer);
507            B64.b64from24bit(altResult[22], altResult[43], altResult[1], 4, buffer);
508            B64.b64from24bit(altResult[44], altResult[2], altResult[23], 4, buffer);
509            B64.b64from24bit(altResult[3], altResult[24], altResult[45], 4, buffer);
510            B64.b64from24bit(altResult[25], altResult[46], altResult[4], 4, buffer);
511            B64.b64from24bit(altResult[47], altResult[5], altResult[26], 4, buffer);
512            B64.b64from24bit(altResult[6], altResult[27], altResult[48], 4, buffer);
513            B64.b64from24bit(altResult[28], altResult[49], altResult[7], 4, buffer);
514            B64.b64from24bit(altResult[50], altResult[8], altResult[29], 4, buffer);
515            B64.b64from24bit(altResult[9], altResult[30], altResult[51], 4, buffer);
516            B64.b64from24bit(altResult[31], altResult[52], altResult[10], 4, buffer);
517            B64.b64from24bit(altResult[53], altResult[11], altResult[32], 4, buffer);
518            B64.b64from24bit(altResult[12], altResult[33], altResult[54], 4, buffer);
519            B64.b64from24bit(altResult[34], altResult[55], altResult[13], 4, buffer);
520            B64.b64from24bit(altResult[56], altResult[14], altResult[35], 4, buffer);
521            B64.b64from24bit(altResult[15], altResult[36], altResult[57], 4, buffer);
522            B64.b64from24bit(altResult[37], altResult[58], altResult[16], 4, buffer);
523            B64.b64from24bit(altResult[59], altResult[17], altResult[38], 4, buffer);
524            B64.b64from24bit(altResult[18], altResult[39], altResult[60], 4, buffer);
525            B64.b64from24bit(altResult[40], altResult[61], altResult[19], 4, buffer);
526            B64.b64from24bit(altResult[62], altResult[20], altResult[41], 4, buffer);
527            B64.b64from24bit((byte) 0, (byte) 0, altResult[63], 2, buffer);
528        }
529
530        /*
531         * Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps
532         * cannot get any information.
533         */
534        // Is there a better way to do this with the JVM?
535        Arrays.fill(tempResult, (byte) 0);
536        Arrays.fill(pBytes, (byte) 0);
537        Arrays.fill(sBytes, (byte) 0);
538        ctx.reset();
539        altCtx.reset();
540        Arrays.fill(keyBytes, (byte) 0);
541        Arrays.fill(saltBytes, (byte) 0);
542
543        return buffer.toString();
544    }
545
546    /**
547     * Generates a libc crypt() compatible "$6$" hash value with random salt.
548     * <p>
549     * See {@link Crypt#crypt(String, String)} for details.
550     * </p>
551     * <p>
552     * A salt is generated for you using {@link SecureRandom}
553     * </p>
554     *
555     * @param keyBytes
556     *            plaintext to hash. Each array element is set to {@code 0} before returning.
557     * @return complete hash value
558     * @throws IllegalArgumentException
559     *             when a {@link java.security.NoSuchAlgorithmException} is caught.
560     */
561    public static String sha512Crypt(final byte[] keyBytes) {
562        return sha512Crypt(keyBytes, null);
563    }
564
565    /**
566     * Generates a libc6 crypt() compatible "$6$" hash value.
567     * <p>
568     * See {@link Crypt#crypt(String, String)} for details.
569     * </p>
570     * @param keyBytes
571     *            plaintext to hash. Each array element is set to {@code 0} before returning.
572     * @param salt
573     *            real salt value without prefix or "rounds=". The salt may be null, in which case a salt is generated
574     *            for you using {@link SecureRandom}; if you want to use a {@link Random} object other than
575     *            {@link SecureRandom} then we suggest you provide it using
576     *            {@link #sha512Crypt(byte[], String, Random)}.
577     * @return complete hash value including salt
578     * @throws IllegalArgumentException
579     *             if the salt does not match the allowed pattern
580     * @throws IllegalArgumentException
581     *             when a {@link java.security.NoSuchAlgorithmException} is caught.
582     */
583    public static String sha512Crypt(final byte[] keyBytes, String salt) {
584        if (salt == null) {
585            salt = SHA512_PREFIX + B64.getRandomSalt(8);
586        }
587        return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512);
588    }
589
590    /**
591     * Generates a libc6 crypt() compatible "$6$" hash value.
592     * <p>
593     * See {@link Crypt#crypt(String, String)} for details.
594     * </p>
595     * @param keyBytes
596     *            plaintext to hash. Each array element is set to {@code 0} before returning.
597     * @param salt
598     *            real salt value without prefix or "rounds=". The salt may be null, in which case a salt
599     *            is generated for you using {@link SecureRandom}.
600     * @param random
601     *            the instance of {@link Random} to use for generating the salt.
602     *            Consider using {@link SecureRandom} for more secure salts.
603     * @return complete hash value including salt
604     * @throws IllegalArgumentException
605     *             if the salt does not match the allowed pattern
606     * @throws IllegalArgumentException
607     *             when a {@link java.security.NoSuchAlgorithmException} is caught.
608     * @since 1.12
609     */
610    public static String sha512Crypt(final byte[] keyBytes, String salt, final Random random) {
611        if (salt == null) {
612            salt = SHA512_PREFIX + B64.getRandomSalt(8, random);
613        }
614        return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512);
615    }
616
617    /**
618     * Consider private.
619     *
620     * @deprecated Will be private in the next major version.
621     */
622    @Deprecated
623    public Sha2Crypt() {
624        // empty
625    }
626}