001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.geometry.euclidean; 018 019/** Base class for affine transform matrices in Euclidean space. 020 * 021 * @param <V> Vector/point implementation type defining the space. 022 * @param <M> Matrix transform implementation type. 023 */ 024public abstract class AbstractAffineTransformMatrix< 025 V extends EuclideanVector<V>, 026 M extends AbstractAffineTransformMatrix<V, M>> 027 implements EuclideanTransform<V> { 028 029 /** Apply this transform to the given vector, ignoring translations and normalizing the 030 * result. This is equivalent to {@code transform.applyVector(vec).normalize()} but without 031 * the intermediate vector instance. 032 * 033 * @param vec the vector to transform 034 * @return the new, transformed unit vector 035 * @throws IllegalArgumentException if the transformed vector coordinates cannot be normalized 036 * @see #applyVector(EuclideanVector) 037 */ 038 public abstract V applyDirection(V vec); 039 040 /** Get the determinant of the matrix. 041 * @return the determinant of the matrix 042 */ 043 public abstract double determinant(); 044 045 /** {@inheritDoc} 046 * @throws IllegalStateException if the matrix cannot be inverted 047 */ 048 @Override 049 public abstract M inverse(); 050 051 /** Return a matrix containing only the linear portion of this transform. 052 * The returned instance contains the same matrix elements as this instance 053 * but with the translation component set to zero. 054 * @return a matrix containing only the linear portion of this transform 055 */ 056 public abstract M linear(); 057 058 /** Return a matrix containing the transpose of the linear portion of this transform. 059 * The returned instance is linear, meaning it has a translation component of zero. 060 * @return a matrix containing the transpose of the linear portion of this transform 061 */ 062 public abstract M linearTranspose(); 063 064 /** Return a transform suitable for transforming normals. The returned matrix is 065 * the inverse transpose of the linear portion of this instance, i.e. 066 * <code>N = (L<sup>-1</sup>)<sup>T</sup></code>, where <code>L</code> is the linear portion 067 * of this instance and <code>N</code> is the returned matrix. Note that normals 068 * transformed with the returned matrix may be scaled during transformation and require 069 * normalization. 070 * @return a transform suitable for transforming normals 071 * @throws IllegalStateException if the matrix cannot be inverted 072 * @see <a href="https://en.wikipedia.org/wiki/Normal_(geometry)#Transforming_normals">Transforming normals</a> 073 */ 074 public M normalTransform() { 075 return inverse().linearTranspose(); 076 } 077 078 /** {@inheritDoc} 079 * 080 * <p>This method returns true if the determinant of the matrix is positive.</p> 081 */ 082 @Override 083 public boolean preservesOrientation() { 084 return determinant() > 0.0; 085 } 086}