001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.lang3.math; 018 019import java.math.BigInteger; 020import java.util.Objects; 021 022/** 023 * {@link Fraction} is a {@link Number} implementation that 024 * stores fractions accurately. 025 * 026 * <p>This class is immutable, and interoperable with most methods that accept 027 * a {@link Number}.</p> 028 * 029 * <p>Note that this class is intended for common use cases, it is <em>int</em> 030 * based and thus suffers from various overflow issues. For a BigInteger based 031 * equivalent, please see the Commons Math BigFraction class.</p> 032 * 033 * @since 2.0 034 */ 035public final class Fraction extends Number implements Comparable<Fraction> { 036 037 /** 038 * Required for serialization support. Lang version 2.0. 039 * 040 * @see java.io.Serializable 041 */ 042 private static final long serialVersionUID = 65382027393090L; 043 044 /** 045 * {@link Fraction} representation of 0. 046 */ 047 public static final Fraction ZERO = new Fraction(0, 1); 048 /** 049 * {@link Fraction} representation of 1. 050 */ 051 public static final Fraction ONE = new Fraction(1, 1); 052 /** 053 * {@link Fraction} representation of 1/2. 054 */ 055 public static final Fraction ONE_HALF = new Fraction(1, 2); 056 /** 057 * {@link Fraction} representation of 1/3. 058 */ 059 public static final Fraction ONE_THIRD = new Fraction(1, 3); 060 /** 061 * {@link Fraction} representation of 2/3. 062 */ 063 public static final Fraction TWO_THIRDS = new Fraction(2, 3); 064 /** 065 * {@link Fraction} representation of 1/4. 066 */ 067 public static final Fraction ONE_QUARTER = new Fraction(1, 4); 068 /** 069 * {@link Fraction} representation of 2/4. 070 */ 071 public static final Fraction TWO_QUARTERS = new Fraction(2, 4); 072 /** 073 * {@link Fraction} representation of 3/4. 074 */ 075 public static final Fraction THREE_QUARTERS = new Fraction(3, 4); 076 /** 077 * {@link Fraction} representation of 1/5. 078 */ 079 public static final Fraction ONE_FIFTH = new Fraction(1, 5); 080 /** 081 * {@link Fraction} representation of 2/5. 082 */ 083 public static final Fraction TWO_FIFTHS = new Fraction(2, 5); 084 /** 085 * {@link Fraction} representation of 3/5. 086 */ 087 public static final Fraction THREE_FIFTHS = new Fraction(3, 5); 088 /** 089 * {@link Fraction} representation of 4/5. 090 */ 091 public static final Fraction FOUR_FIFTHS = new Fraction(4, 5); 092 093 /** 094 * Add two integers, checking for overflow. 095 * 096 * @param x an addend 097 * @param y an addend 098 * @return the sum {@code x+y} 099 * @throws ArithmeticException if the result can not be represented as 100 * an int 101 */ 102 private static int addAndCheck(final int x, final int y) { 103 final long s = (long) x + (long) y; 104 if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { 105 throw new ArithmeticException("overflow: add"); 106 } 107 return (int) s; 108 } 109 /** 110 * Creates a {@link Fraction} instance from a {@code double} value. 111 * 112 * <p>This method uses the <a href="https://web.archive.org/web/20210516065058/http%3A//archives.math.utk.edu/articles/atuyl/confrac/"> 113 * continued fraction algorithm</a>, computing a maximum of 114 * 25 convergents and bounding the denominator by 10,000.</p> 115 * 116 * @param value the double value to convert 117 * @return a new fraction instance that is close to the value 118 * @throws ArithmeticException if {@code |value| > Integer.MAX_VALUE} 119 * or {@code value = NaN} 120 * @throws ArithmeticException if the calculated denominator is {@code zero} 121 * @throws ArithmeticException if the algorithm does not converge 122 */ 123 public static Fraction getFraction(double value) { 124 final int sign = value < 0 ? -1 : 1; 125 value = Math.abs(value); 126 if (value > Integer.MAX_VALUE || Double.isNaN(value)) { 127 throw new ArithmeticException("The value must not be greater than Integer.MAX_VALUE or NaN"); 128 } 129 final int wholeNumber = (int) value; 130 value -= wholeNumber; 131 132 int numer0 = 0; // the pre-previous 133 int denom0 = 1; // the pre-previous 134 int numer1 = 1; // the previous 135 int denom1 = 0; // the previous 136 int numer2; // the current, setup in calculation 137 int denom2; // the current, setup in calculation 138 int a1 = (int) value; 139 int a2; 140 double x1 = 1; 141 double x2; 142 double y1 = value - a1; 143 double y2; 144 double delta1, delta2 = Double.MAX_VALUE; 145 double fraction; 146 int i = 1; 147 do { 148 delta1 = delta2; 149 a2 = (int) (x1 / y1); 150 x2 = y1; 151 y2 = x1 - a2 * y1; 152 numer2 = a1 * numer1 + numer0; 153 denom2 = a1 * denom1 + denom0; 154 fraction = (double) numer2 / (double) denom2; 155 delta2 = Math.abs(value - fraction); 156 a1 = a2; 157 x1 = x2; 158 y1 = y2; 159 numer0 = numer1; 160 denom0 = denom1; 161 numer1 = numer2; 162 denom1 = denom2; 163 i++; 164 } while (delta1 > delta2 && denom2 <= 10000 && denom2 > 0 && i < 25); 165 if (i == 25) { 166 throw new ArithmeticException("Unable to convert double to fraction"); 167 } 168 return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0); 169 } 170 171 /** 172 * Creates a {@link Fraction} instance with the 2 parts 173 * of a fraction Y/Z. 174 * 175 * <p>Any negative signs are resolved to be on the numerator.</p> 176 * 177 * @param numerator the numerator, for example the three in 'three sevenths' 178 * @param denominator the denominator, for example the seven in 'three sevenths' 179 * @return a new fraction instance 180 * @throws ArithmeticException if the denominator is {@code zero} 181 * or the denominator is {@code negative} and the numerator is {@code Integer#MIN_VALUE} 182 */ 183 public static Fraction getFraction(int numerator, int denominator) { 184 if (denominator == 0) { 185 throw new ArithmeticException("The denominator must not be zero"); 186 } 187 if (denominator < 0) { 188 if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) { 189 throw new ArithmeticException("overflow: can't negate"); 190 } 191 numerator = -numerator; 192 denominator = -denominator; 193 } 194 return new Fraction(numerator, denominator); 195 } 196 /** 197 * Creates a {@link Fraction} instance with the 3 parts 198 * of a fraction X Y/Z. 199 * 200 * <p>The negative sign must be passed in on the whole number part.</p> 201 * 202 * @param whole the whole number, for example the one in 'one and three sevenths' 203 * @param numerator the numerator, for example the three in 'one and three sevenths' 204 * @param denominator the denominator, for example the seven in 'one and three sevenths' 205 * @return a new fraction instance 206 * @throws ArithmeticException if the denominator is {@code zero} 207 * @throws ArithmeticException if the denominator is negative 208 * @throws ArithmeticException if the numerator is negative 209 * @throws ArithmeticException if the resulting numerator exceeds 210 * {@code Integer.MAX_VALUE} 211 */ 212 public static Fraction getFraction(final int whole, final int numerator, final int denominator) { 213 if (denominator == 0) { 214 throw new ArithmeticException("The denominator must not be zero"); 215 } 216 if (denominator < 0) { 217 throw new ArithmeticException("The denominator must not be negative"); 218 } 219 if (numerator < 0) { 220 throw new ArithmeticException("The numerator must not be negative"); 221 } 222 final long numeratorValue; 223 if (whole < 0) { 224 numeratorValue = whole * (long) denominator - numerator; 225 } else { 226 numeratorValue = whole * (long) denominator + numerator; 227 } 228 if (numeratorValue < Integer.MIN_VALUE || numeratorValue > Integer.MAX_VALUE) { 229 throw new ArithmeticException("Numerator too large to represent as an Integer."); 230 } 231 return new Fraction((int) numeratorValue, denominator); 232 } 233 /** 234 * Creates a Fraction from a {@link String}. 235 * 236 * <p>The formats accepted are:</p> 237 * 238 * <ol> 239 * <li>{@code double} String containing a dot</li> 240 * <li>'X Y/Z'</li> 241 * <li>'Y/Z'</li> 242 * <li>'X' (a simple whole number)</li> 243 * </ol> 244 * <p>and a .</p> 245 * 246 * @param str the string to parse, must not be {@code null} 247 * @return the new {@link Fraction} instance 248 * @throws NullPointerException if the string is {@code null} 249 * @throws NumberFormatException if the number format is invalid 250 */ 251 public static Fraction getFraction(String str) { 252 Objects.requireNonNull(str, "str"); 253 // parse double format 254 int pos = str.indexOf('.'); 255 if (pos >= 0) { 256 return getFraction(Double.parseDouble(str)); 257 } 258 259 // parse X Y/Z format 260 pos = str.indexOf(' '); 261 if (pos > 0) { 262 final int whole = Integer.parseInt(str.substring(0, pos)); 263 str = str.substring(pos + 1); 264 pos = str.indexOf('/'); 265 if (pos < 0) { 266 throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z"); 267 } 268 final int numer = Integer.parseInt(str.substring(0, pos)); 269 final int denom = Integer.parseInt(str.substring(pos + 1)); 270 return getFraction(whole, numer, denom); 271 } 272 273 // parse Y/Z format 274 pos = str.indexOf('/'); 275 if (pos < 0) { 276 // simple whole number 277 return getFraction(Integer.parseInt(str), 1); 278 } 279 final int numer = Integer.parseInt(str.substring(0, pos)); 280 final int denom = Integer.parseInt(str.substring(pos + 1)); 281 return getFraction(numer, denom); 282 } 283 284 /** 285 * Creates a reduced {@link Fraction} instance with the 2 parts 286 * of a fraction Y/Z. 287 * 288 * <p>For example, if the input parameters represent 2/4, then the created 289 * fraction will be 1/2.</p> 290 * 291 * <p>Any negative signs are resolved to be on the numerator.</p> 292 * 293 * @param numerator the numerator, for example the three in 'three sevenths' 294 * @param denominator the denominator, for example the seven in 'three sevenths' 295 * @return a new fraction instance, with the numerator and denominator reduced 296 * @throws ArithmeticException if the denominator is {@code zero} 297 */ 298 public static Fraction getReducedFraction(int numerator, int denominator) { 299 if (denominator == 0) { 300 throw new ArithmeticException("The denominator must not be zero"); 301 } 302 if (numerator == 0) { 303 return ZERO; // normalize zero. 304 } 305 // allow 2^k/-2^31 as a valid fraction (where k>0) 306 if (denominator == Integer.MIN_VALUE && (numerator & 1) == 0) { 307 numerator /= 2; 308 denominator /= 2; 309 } 310 if (denominator < 0) { 311 if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) { 312 throw new ArithmeticException("overflow: can't negate"); 313 } 314 numerator = -numerator; 315 denominator = -denominator; 316 } 317 // simplify fraction. 318 final int gcd = greatestCommonDivisor(numerator, denominator); 319 numerator /= gcd; 320 denominator /= gcd; 321 return new Fraction(numerator, denominator); 322 } 323 324 /** 325 * Gets the greatest common divisor of the absolute value of 326 * two numbers, using the "binary gcd" method which avoids 327 * division and modulo operations. See Knuth 4.5.2 algorithm B. 328 * This algorithm is due to Josef Stein (1961). 329 * 330 * @param u a non-zero number 331 * @param v a non-zero number 332 * @return the greatest common divisor, never zero 333 */ 334 private static int greatestCommonDivisor(int u, int v) { 335 // From Commons Math: 336 if (u == 0 || v == 0) { 337 if (u == Integer.MIN_VALUE || v == Integer.MIN_VALUE) { 338 throw new ArithmeticException("overflow: gcd is 2^31"); 339 } 340 return Math.abs(u) + Math.abs(v); 341 } 342 // if either operand is abs 1, return 1: 343 if (Math.abs(u) == 1 || Math.abs(v) == 1) { 344 return 1; 345 } 346 // keep u and v negative, as negative integers range down to 347 // -2^31, while positive numbers can only be as large as 2^31-1 348 // (i.e. we can't necessarily negate a negative number without 349 // overflow) 350 if (u > 0) { 351 u = -u; 352 } // make u negative 353 if (v > 0) { 354 v = -v; 355 } // make v negative 356 // B1. [Find power of 2] 357 int k = 0; 358 while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are both even... 359 u /= 2; 360 v /= 2; 361 k++; // cast out twos. 362 } 363 if (k == 31) { 364 throw new ArithmeticException("overflow: gcd is 2^31"); 365 } 366 // B2. Initialize: u and v have been divided by 2^k and at least 367 // one is odd. 368 int t = (u & 1) == 1 ? v : -(u / 2)/* B3 */; 369 // t negative: u was odd, v may be even (t replaces v) 370 // t positive: u was even, v is odd (t replaces u) 371 do { 372 /* assert u<0 && v<0; */ 373 // B4/B3: cast out twos from t. 374 while ((t & 1) == 0) { // while t is even. 375 t /= 2; // cast out twos 376 } 377 // B5 [reset max(u,v)] 378 if (t > 0) { 379 u = -t; 380 } else { 381 v = t; 382 } 383 // B6/B3. at this point both u and v should be odd. 384 t = (v - u) / 2; 385 // |u| larger: t positive (replace u) 386 // |v| larger: t negative (replace v) 387 } while (t != 0); 388 return -u * (1 << k); // gcd is u*2^k 389 } 390 391 /** 392 * Multiply two integers, checking for overflow. 393 * 394 * @param x a factor 395 * @param y a factor 396 * @return the product {@code x*y} 397 * @throws ArithmeticException if the result can not be represented as 398 * an int 399 */ 400 private static int mulAndCheck(final int x, final int y) { 401 final long m = (long) x * (long) y; 402 if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) { 403 throw new ArithmeticException("overflow: mul"); 404 } 405 return (int) m; 406 } 407 408 /** 409 * Multiply two non-negative integers, checking for overflow. 410 * 411 * @param x a non-negative factor 412 * @param y a non-negative factor 413 * @return the product {@code x*y} 414 * @throws ArithmeticException if the result can not be represented as 415 * an int 416 */ 417 private static int mulPosAndCheck(final int x, final int y) { 418 /* assert x>=0 && y>=0; */ 419 final long m = (long) x * (long) y; 420 if (m > Integer.MAX_VALUE) { 421 throw new ArithmeticException("overflow: mulPos"); 422 } 423 return (int) m; 424 } 425 426 /** 427 * Subtract two integers, checking for overflow. 428 * 429 * @param x the minuend 430 * @param y the subtrahend 431 * @return the difference {@code x-y} 432 * @throws ArithmeticException if the result can not be represented as 433 * an int 434 */ 435 private static int subAndCheck(final int x, final int y) { 436 final long s = (long) x - (long) y; 437 if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { 438 throw new ArithmeticException("overflow: add"); 439 } 440 return (int) s; 441 } 442 443 /** 444 * The numerator number part of the fraction (the three in three sevenths). 445 */ 446 private final int numerator; 447 448 /** 449 * The denominator number part of the fraction (the seven in three sevenths). 450 */ 451 private final int denominator; 452 453 /** 454 * Cached output hashCode (class is immutable). 455 */ 456 private transient int hashCode; 457 458 /** 459 * Cached output toString (class is immutable). 460 */ 461 private transient String toString; 462 463 /** 464 * Cached output toProperString (class is immutable). 465 */ 466 private transient String toProperString; 467 468 /** 469 * Constructs a {@link Fraction} instance with the 2 parts 470 * of a fraction Y/Z. 471 * 472 * @param numerator the numerator, for example the three in 'three sevenths' 473 * @param denominator the denominator, for example the seven in 'three sevenths' 474 */ 475 private Fraction(final int numerator, final int denominator) { 476 this.numerator = numerator; 477 this.denominator = denominator; 478 } 479 480 /** 481 * Gets a fraction that is the positive equivalent of this one. 482 * <p>More precisely: {@code (fraction >= 0 ? this : -fraction)}</p> 483 * 484 * <p>The returned fraction is not reduced.</p> 485 * 486 * @return {@code this} if it is positive, or a new positive fraction 487 * instance with the opposite signed numerator 488 */ 489 public Fraction abs() { 490 if (numerator >= 0) { 491 return this; 492 } 493 return negate(); 494 } 495 496 /** 497 * Adds the value of this fraction to another, returning the result in reduced form. 498 * The algorithm follows Knuth, 4.5.1. 499 * 500 * @param fraction the fraction to add, must not be {@code null} 501 * @return a {@link Fraction} instance with the resulting values 502 * @throws NullPointerException if the fraction is {@code null} 503 * @throws ArithmeticException if the resulting numerator or denominator exceeds 504 * {@code Integer.MAX_VALUE} 505 */ 506 public Fraction add(final Fraction fraction) { 507 return addSub(fraction, true /* add */); 508 } 509 510 /** 511 * Implement add and subtract using algorithm described in Knuth 4.5.1. 512 * 513 * @param fraction the fraction to subtract, must not be {@code null} 514 * @param isAdd true to add, false to subtract 515 * @return a {@link Fraction} instance with the resulting values 516 * @throws IllegalArgumentException if the fraction is {@code null} 517 * @throws ArithmeticException if the resulting numerator or denominator 518 * cannot be represented in an {@code int}. 519 */ 520 private Fraction addSub(final Fraction fraction, final boolean isAdd) { 521 Objects.requireNonNull(fraction, "fraction"); 522 // zero is identity for addition. 523 if (numerator == 0) { 524 return isAdd ? fraction : fraction.negate(); 525 } 526 if (fraction.numerator == 0) { 527 return this; 528 } 529 // if denominators are randomly distributed, d1 will be 1 about 61% 530 // of the time. 531 final int d1 = greatestCommonDivisor(denominator, fraction.denominator); 532 if (d1 == 1) { 533 // result is ( (u*v' +/- u'v) / u'v') 534 final int uvp = mulAndCheck(numerator, fraction.denominator); 535 final int upv = mulAndCheck(fraction.numerator, denominator); 536 return new Fraction(isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), mulPosAndCheck(denominator, 537 fraction.denominator)); 538 } 539 // the quantity 't' requires 65 bits of precision; see knuth 4.5.1 540 // exercise 7. we're going to use a BigInteger. 541 // t = u(v'/d1) +/- v(u'/d1) 542 final BigInteger uvp = BigInteger.valueOf(numerator).multiply(BigInteger.valueOf(fraction.denominator / d1)); 543 final BigInteger upv = BigInteger.valueOf(fraction.numerator).multiply(BigInteger.valueOf(denominator / d1)); 544 final BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv); 545 // but d2 doesn't need extra precision because 546 // d2 = gcd(t,d1) = gcd(t mod d1, d1) 547 final int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue(); 548 final int d2 = tmodd1 == 0 ? d1 : greatestCommonDivisor(tmodd1, d1); 549 550 // result is (t/d2) / (u'/d1)(v'/d2) 551 final BigInteger w = t.divide(BigInteger.valueOf(d2)); 552 if (w.bitLength() > 31) { 553 throw new ArithmeticException("overflow: numerator too large after multiply"); 554 } 555 return new Fraction(w.intValue(), mulPosAndCheck(denominator / d1, fraction.denominator / d2)); 556 } 557 558 /** 559 * Compares this object to another based on size. 560 * 561 * <p>Note: this class has a natural ordering that is inconsistent 562 * with equals, because, for example, equals treats 1/2 and 2/4 as 563 * different, whereas compareTo treats them as equal. 564 * 565 * @param other the object to compare to 566 * @return -1 if this is less, 0 if equal, +1 if greater 567 * @throws ClassCastException if the object is not a {@link Fraction} 568 * @throws NullPointerException if the object is {@code null} 569 */ 570 @Override 571 public int compareTo(final Fraction other) { 572 if (this == other) { 573 return 0; 574 } 575 if (numerator == other.numerator && denominator == other.denominator) { 576 return 0; 577 } 578 579 // otherwise see which is less 580 final long first = (long) numerator * (long) other.denominator; 581 final long second = (long) other.numerator * (long) denominator; 582 return Long.compare(first, second); 583 } 584 585 /** 586 * Divide the value of this fraction by another. 587 * 588 * @param fraction the fraction to divide by, must not be {@code null} 589 * @return a {@link Fraction} instance with the resulting values 590 * @throws NullPointerException if the fraction is {@code null} 591 * @throws ArithmeticException if the fraction to divide by is zero 592 * @throws ArithmeticException if the resulting numerator or denominator exceeds 593 * {@code Integer.MAX_VALUE} 594 */ 595 public Fraction divideBy(final Fraction fraction) { 596 Objects.requireNonNull(fraction, "fraction"); 597 if (fraction.numerator == 0) { 598 throw new ArithmeticException("The fraction to divide by must not be zero"); 599 } 600 return multiplyBy(fraction.invert()); 601 } 602 603 /** 604 * Gets the fraction as a {@code double}. This calculates the fraction 605 * as the numerator divided by denominator. 606 * 607 * @return the fraction as a {@code double} 608 */ 609 @Override 610 public double doubleValue() { 611 return (double) numerator / (double) denominator; 612 } 613 614 /** 615 * Compares this fraction to another object to test if they are equal. 616 * 617 * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p> 618 * 619 * @param obj the reference object with which to compare 620 * @return {@code true} if this object is equal 621 */ 622 @Override 623 public boolean equals(final Object obj) { 624 if (obj == this) { 625 return true; 626 } 627 if (!(obj instanceof Fraction)) { 628 return false; 629 } 630 final Fraction other = (Fraction) obj; 631 return getNumerator() == other.getNumerator() && getDenominator() == other.getDenominator(); 632 } 633 634 /** 635 * Gets the fraction as a {@code float}. This calculates the fraction 636 * as the numerator divided by denominator. 637 * 638 * @return the fraction as a {@code float} 639 */ 640 @Override 641 public float floatValue() { 642 return (float) numerator / (float) denominator; 643 } 644 645 /** 646 * Gets the denominator part of the fraction. 647 * 648 * @return the denominator fraction part 649 */ 650 public int getDenominator() { 651 return denominator; 652 } 653 654 /** 655 * Gets the numerator part of the fraction. 656 * 657 * <p>This method may return a value greater than the denominator, an 658 * improper fraction, such as the seven in 7/4.</p> 659 * 660 * @return the numerator fraction part 661 */ 662 public int getNumerator() { 663 return numerator; 664 } 665 666 /** 667 * Gets the proper numerator, always positive. 668 * 669 * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4. 670 * This method returns the 3 from the proper fraction.</p> 671 * 672 * <p>If the fraction is negative such as -7/4, it can be resolved into 673 * -1 3/4, so this method returns the positive proper numerator, 3.</p> 674 * 675 * @return the numerator fraction part of a proper fraction, always positive 676 */ 677 public int getProperNumerator() { 678 return Math.abs(numerator % denominator); 679 } 680 681 /** 682 * Gets the proper whole part of the fraction. 683 * 684 * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4. 685 * This method returns the 1 from the proper fraction.</p> 686 * 687 * <p>If the fraction is negative such as -7/4, it can be resolved into 688 * -1 3/4, so this method returns the positive whole part -1.</p> 689 * 690 * @return the whole fraction part of a proper fraction, that includes the sign 691 */ 692 public int getProperWhole() { 693 return numerator / denominator; 694 } 695 696 /** 697 * Gets a hashCode for the fraction. 698 * 699 * @return a hash code value for this object 700 */ 701 @Override 702 public int hashCode() { 703 if (hashCode == 0) { 704 // hash code update should be atomic. 705 hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator(); 706 } 707 return hashCode; 708 } 709 710 /** 711 * Gets the fraction as an {@code int}. This returns the whole number 712 * part of the fraction. 713 * 714 * @return the whole number fraction part 715 */ 716 @Override 717 public int intValue() { 718 return numerator / denominator; 719 } 720 721 /** 722 * Gets a fraction that is the inverse (1/fraction) of this one. 723 * 724 * <p>The returned fraction is not reduced.</p> 725 * 726 * @return a new fraction instance with the numerator and denominator 727 * inverted. 728 * @throws ArithmeticException if the fraction represents zero. 729 */ 730 public Fraction invert() { 731 if (numerator == 0) { 732 throw new ArithmeticException("Unable to invert zero."); 733 } 734 if (numerator == Integer.MIN_VALUE) { 735 throw new ArithmeticException("overflow: can't negate numerator"); 736 } 737 if (numerator < 0) { 738 return new Fraction(-denominator, -numerator); 739 } 740 return new Fraction(denominator, numerator); 741 } 742 743 /** 744 * Gets the fraction as a {@code long}. This returns the whole number 745 * part of the fraction. 746 * 747 * @return the whole number fraction part 748 */ 749 @Override 750 public long longValue() { 751 return (long) numerator / denominator; 752 } 753 754 /** 755 * Multiplies the value of this fraction by another, returning the 756 * result in reduced form. 757 * 758 * @param fraction the fraction to multiply by, must not be {@code null} 759 * @return a {@link Fraction} instance with the resulting values 760 * @throws NullPointerException if the fraction is {@code null} 761 * @throws ArithmeticException if the resulting numerator or denominator exceeds 762 * {@code Integer.MAX_VALUE} 763 */ 764 public Fraction multiplyBy(final Fraction fraction) { 765 Objects.requireNonNull(fraction, "fraction"); 766 if (numerator == 0 || fraction.numerator == 0) { 767 return ZERO; 768 } 769 // knuth 4.5.1 770 // make sure we don't overflow unless the result *must* overflow. 771 final int d1 = greatestCommonDivisor(numerator, fraction.denominator); 772 final int d2 = greatestCommonDivisor(fraction.numerator, denominator); 773 return getReducedFraction(mulAndCheck(numerator / d1, fraction.numerator / d2), mulPosAndCheck(denominator / d2, fraction.denominator / d1)); 774 } 775 776 /** 777 * Gets a fraction that is the negative (-fraction) of this one. 778 * 779 * <p>The returned fraction is not reduced.</p> 780 * 781 * @return a new fraction instance with the opposite signed numerator 782 */ 783 public Fraction negate() { 784 // the positive range is one smaller than the negative range of an int. 785 if (numerator == Integer.MIN_VALUE) { 786 throw new ArithmeticException("overflow: too large to negate"); 787 } 788 return new Fraction(-numerator, denominator); 789 } 790 791 /** 792 * Gets a fraction that is raised to the passed in power. 793 * 794 * <p>The returned fraction is in reduced form.</p> 795 * 796 * @param power the power to raise the fraction to 797 * @return {@code this} if the power is one, {@link #ONE} if the power 798 * is zero (even if the fraction equals ZERO) or a new fraction instance 799 * raised to the appropriate power 800 * @throws ArithmeticException if the resulting numerator or denominator exceeds 801 * {@code Integer.MAX_VALUE} 802 */ 803 public Fraction pow(final int power) { 804 if (power == 1) { 805 return this; 806 } 807 if (power == 0) { 808 return ONE; 809 } 810 if (power < 0) { 811 if (power == Integer.MIN_VALUE) { // MIN_VALUE can't be negated. 812 return this.invert().pow(2).pow(-(power / 2)); 813 } 814 return this.invert().pow(-power); 815 } 816 final Fraction f = this.multiplyBy(this); 817 if (power % 2 == 0) { // if even... 818 return f.pow(power / 2); 819 } 820 return f.pow(power / 2).multiplyBy(this); 821 } 822 823 /** 824 * Reduce the fraction to the smallest values for the numerator and 825 * denominator, returning the result. 826 * 827 * <p>For example, if this fraction represents 2/4, then the result 828 * will be 1/2.</p> 829 * 830 * @return a new reduced fraction instance, or this if no simplification possible 831 */ 832 public Fraction reduce() { 833 if (numerator == 0) { 834 return equals(ZERO) ? this : ZERO; 835 } 836 final int gcd = greatestCommonDivisor(Math.abs(numerator), denominator); 837 if (gcd == 1) { 838 return this; 839 } 840 return getFraction(numerator / gcd, denominator / gcd); 841 } 842 843 /** 844 * Subtracts the value of another fraction from the value of this one, 845 * returning the result in reduced form. 846 * 847 * @param fraction the fraction to subtract, must not be {@code null} 848 * @return a {@link Fraction} instance with the resulting values 849 * @throws NullPointerException if the fraction is {@code null} 850 * @throws ArithmeticException if the resulting numerator or denominator 851 * cannot be represented in an {@code int}. 852 */ 853 public Fraction subtract(final Fraction fraction) { 854 return addSub(fraction, false /* subtract */); 855 } 856 857 /** 858 * Gets the fraction as a proper {@link String} in the format X Y/Z. 859 * 860 * <p>The format used in '<em>wholeNumber</em> <em>numerator</em>/<em>denominator</em>'. 861 * If the whole number is zero it will be omitted. If the numerator is zero, 862 * only the whole number is returned.</p> 863 * 864 * @return a {@link String} form of the fraction 865 */ 866 public String toProperString() { 867 if (toProperString == null) { 868 if (numerator == 0) { 869 toProperString = "0"; 870 } else if (numerator == denominator) { 871 toProperString = "1"; 872 } else if (numerator == -1 * denominator) { 873 toProperString = "-1"; 874 } else if ((numerator > 0 ? -numerator : numerator) < -denominator) { 875 // note that we do the magnitude comparison test above with 876 // NEGATIVE (not positive) numbers, since negative numbers 877 // have a larger range. otherwise numerator == Integer.MIN_VALUE 878 // is handled incorrectly. 879 final int properNumerator = getProperNumerator(); 880 if (properNumerator == 0) { 881 toProperString = Integer.toString(getProperWhole()); 882 } else { 883 toProperString = getProperWhole() + " " + properNumerator + "/" + getDenominator(); 884 } 885 } else { 886 toProperString = getNumerator() + "/" + getDenominator(); 887 } 888 } 889 return toProperString; 890 } 891 892 /** 893 * Gets the fraction as a {@link String}. 894 * 895 * <p>The format used is '<em>numerator</em>/<em>denominator</em>' always. 896 * 897 * @return a {@link String} form of the fraction 898 */ 899 @Override 900 public String toString() { 901 if (toString == null) { 902 toString = getNumerator() + "/" + getDenominator(); 903 } 904 return toString; 905 } 906}