Uses of Class
org.apache.commons.math4.legacy.exception.MathIllegalArgumentException
-
Packages that use MathIllegalArgumentException Package Description org.apache.commons.math4.legacy.analysis.differentiation This package holds the main interfaces and basic building block classes dealing with differentiation.org.apache.commons.math4.legacy.analysis.interpolation Univariate real functions interpolation algorithms.org.apache.commons.math4.legacy.analysis.solvers Root finding algorithms, for univariate real functions.org.apache.commons.math4.legacy.exception Specialized exceptions for algorithms errors.org.apache.commons.math4.legacy.genetics This package provides Genetic Algorithms components and implementations.org.apache.commons.math4.legacy.linear Linear algebra support.org.apache.commons.math4.legacy.ode This package provides classes to solve Ordinary Differential Equations problems.org.apache.commons.math4.legacy.special Implementations of special functions.org.apache.commons.math4.legacy.stat Data storage, manipulation and summary routines.org.apache.commons.math4.legacy.stat.correlation Correlations/Covariance computations.org.apache.commons.math4.legacy.stat.descriptive Generic univariate summary statistic objects.org.apache.commons.math4.legacy.stat.descriptive.moment Summary statistics based on moments.org.apache.commons.math4.legacy.stat.descriptive.rank Summary statistics based on ranks.org.apache.commons.math4.legacy.stat.descriptive.summary Other summary statistics.org.apache.commons.math4.legacy.stat.inference Classes providing hypothesis testing.org.apache.commons.math4.legacy.stat.regression Statistical routines involving multivariate data.org.apache.commons.math4.legacy.util Convenience routines and common data structures used throughout the commons-math library. -
-
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.analysis.differentiation
Methods in org.apache.commons.math4.legacy.analysis.differentiation that throw MathIllegalArgumentException Modifier and Type Method Description DerivativeStructure[]
MultivariateDifferentiableVectorFunction. value(DerivativeStructure[] point)
Compute the value for the function at the given point.DerivativeStructure[][]
UnivariateDifferentiableMatrixFunction. value(DerivativeStructure x)
Compute the value for the function.DerivativeStructure[]
UnivariateDifferentiableVectorFunction. value(DerivativeStructure x)
Compute the value for the function. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.analysis.interpolation
Methods in org.apache.commons.math4.legacy.analysis.interpolation that throw MathIllegalArgumentException Modifier and Type Method Description MultivariateFunction
MultivariateInterpolator. interpolate(double[][] xval, double[] yval)
Computes an interpolating function for the data set. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.analysis.solvers
Methods in org.apache.commons.math4.legacy.analysis.solvers that throw MathIllegalArgumentException Modifier and Type Method Description double
BaseUnivariateSolver. solve(int maxEval, FUNC f, double min, double max)
Solve for a zero root in the given interval.double
BaseUnivariateSolver. solve(int maxEval, FUNC f, double min, double max, double startValue)
Solve for a zero in the given interval, start atstartValue
. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.exception
Subclasses of MathIllegalArgumentException in org.apache.commons.math4.legacy.exception Modifier and Type Class Description class
DimensionMismatchException
Exception to be thrown when two dimensions differ.class
InsufficientDataException
Exception to be thrown when there is insufficient data to perform a computation.class
MathIllegalNumberException
Base class for exceptions raised by a wrong number.class
MultiDimensionMismatchException
Exception to be thrown when two sets of dimensions differ.class
NoBracketingException
Exception to be thrown when function values have the same sign at both ends of an interval.class
NoDataException
Exception to be thrown when the required data is missing.class
NonMonotonicSequenceException
Exception to be thrown when the a sequence of values is not monotonically increasing or decreasing.class
NotANumberException
Exception to be thrown when a number is not a number.class
NotFiniteNumberException
Exception to be thrown when a number is not finite.class
NotPositiveException
Exception to be thrown when the argument is negative.class
NotStrictlyPositiveException
Exception to be thrown when the argument is not greater than 0.class
NumberIsTooLargeException
Exception to be thrown when a number is too large.class
NumberIsTooSmallException
Exception to be thrown when a number is too small.class
OutOfRangeException
Exception to be thrown when some argument is out of range.class
ZeroException
Exception to be thrown when zero is provided where it is not allowed. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.genetics
Subclasses of MathIllegalArgumentException in org.apache.commons.math4.legacy.genetics Modifier and Type Class Description class
InvalidRepresentationException
Exception indicating that the representation of a chromosome is not valid.Methods in org.apache.commons.math4.legacy.genetics that throw MathIllegalArgumentException Modifier and Type Method Description ChromosomePair
CrossoverPolicy. crossover(Chromosome first, Chromosome second)
Perform a crossover operation on the given chromosomes.ChromosomePair
CycleCrossover. crossover(Chromosome first, Chromosome second)
Perform a crossover operation on the given chromosomes.ChromosomePair
NPointCrossover. crossover(Chromosome first, Chromosome second)
Performs a N-point crossover.ChromosomePair
OnePointCrossover. crossover(Chromosome first, Chromosome second)
Performs one point crossover.ChromosomePair
OrderedCrossover. crossover(Chromosome first, Chromosome second)
Perform a crossover operation on the given chromosomes.ChromosomePair
UniformCrossover. crossover(Chromosome first, Chromosome second)
Perform a crossover operation on the given chromosomes.static <S> List<Double>
RandomKey. inducedPermutation(List<S> originalData, List<S> permutedData)
Generates a representation of a permutation corresponding to a permutation which yieldspermutedData
when applied tooriginalData
.Chromosome
BinaryMutation. mutate(Chromosome original)
Mutate the given chromosome.Chromosome
MutationPolicy. mutate(Chromosome original)
Mutate the given chromosome.Chromosome
RandomKeyMutation. mutate(Chromosome original)
Mutate the given chromosome.ChromosomePair
SelectionPolicy. select(Population population)
Select two chromosomes from the population.ChromosomePair
TournamentSelection. select(Population population)
Select two chromosomes from the population. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.linear
Subclasses of MathIllegalArgumentException in org.apache.commons.math4.legacy.linear Modifier and Type Class Description class
IllConditionedOperatorException
An exception to be thrown when the condition number of aRealLinearOperator
is too high.class
MatrixDimensionMismatchException
Exception to be thrown when either the number of rows or the number of columns of a matrix do not match the expected values.class
NonPositiveDefiniteMatrixException
Exception to be thrown when a positive definite matrix is expected.class
NonPositiveDefiniteOperatorException
Exception to be thrown when a symmetric, definite positiveRealLinearOperator
is expected.class
NonSelfAdjointOperatorException
Exception to be thrown when a self-adjointRealLinearOperator
is expected.class
NonSquareMatrixException
Exception to be thrown when a square matrix is expected.class
NonSquareOperatorException
Exception to be thrown when a square linear operator is expected.class
NonSymmetricMatrixException
Exception to be thrown when a symmetric matrix is expected.class
SingularMatrixException
Exception to be thrown when a non-singular matrix is expected.class
SingularOperatorException
Exception to be thrown when trying to invert a singular operator. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.ode
Subclasses of MathIllegalArgumentException in org.apache.commons.math4.legacy.ode Modifier and Type Class Description static class
JacobianMatrices.MismatchedEquations
Special exception for equations mismatch.class
UnknownParameterException
Exception to be thrown when a parameter is unknown.Methods in org.apache.commons.math4.legacy.ode that throw MathIllegalArgumentException Modifier and Type Method Description void
ContinuousOutputFieldModel. append(ContinuousOutputFieldModel<T> model)
Append another model at the end of the instance.void
ContinuousOutputModel. append(ContinuousOutputModel model)
Append another model at the end of the instance.T[]
FieldEquationsMapper. extractEquationData(int index, T[] complete)
Extract equation data from a complete state or derivative array.void
SecondOrderIntegrator. integrate(SecondOrderDifferentialEquations equations, double t0, double[] y0, double[] yDot0, double t, double[] y, double[] yDot)
Integrate the differential equations up to the given time. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.special
Methods in org.apache.commons.math4.legacy.special that throw MathIllegalArgumentException Modifier and Type Method Description double
BesselJ. value(double x)
Returns the value of the constructed Bessel function of the first kind, for the passed argument.static double
BesselJ. value(double order, double x)
Returns the first Bessel function, \(J_{order}(x)\). -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.stat
Methods in org.apache.commons.math4.legacy.stat that throw MathIllegalArgumentException Modifier and Type Method Description static double
StatUtils. geometricMean(double[] values)
Returns the geometric mean of the entries in the input array, orDouble.NaN
if the array is empty.static double
StatUtils. geometricMean(double[] values, int begin, int length)
Returns the geometric mean of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.static double
StatUtils. max(double[] values)
Returns the maximum of the entries in the input array, orDouble.NaN
if the array is empty.static double
StatUtils. max(double[] values, int begin, int length)
Returns the maximum of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.static double
StatUtils. mean(double[] values)
Returns the arithmetic mean of the entries in the input array, orDouble.NaN
if the array is empty.static double
StatUtils. mean(double[] values, int begin, int length)
Returns the arithmetic mean of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.static double
StatUtils. min(double[] values)
Returns the minimum of the entries in the input array, orDouble.NaN
if the array is empty.static double
StatUtils. min(double[] values, int begin, int length)
Returns the minimum of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.static double[]
StatUtils. mode(double[] sample)
Returns the sample mode(s).static double
StatUtils. percentile(double[] values, double p)
Returns an estimate of thep
th percentile of the values in thevalues
array.static double
StatUtils. percentile(double[] values, int begin, int length, double p)
Returns an estimate of thep
th percentile of the values in thevalues
array, starting with the element in (0-based) positionbegin
in the array and includinglength
values.static double
StatUtils. populationVariance(double[] values)
Returns the population variance of the entries in the input array, orDouble.NaN
if the array is empty.static double
StatUtils. populationVariance(double[] values, double mean)
Returns the population variance of the entries in the input array, using the precomputed mean value.static double
StatUtils. populationVariance(double[] values, double mean, int begin, int length)
Returns the population variance of the entries in the specified portion of the input array, using the precomputed mean value.static double
StatUtils. populationVariance(double[] values, int begin, int length)
Returns the population variance of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.static double
StatUtils. product(double[] values)
Returns the product of the entries in the input array, orDouble.NaN
if the array is empty.static double
StatUtils. product(double[] values, int begin, int length)
Returns the product of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.static double
StatUtils. sum(double[] values)
Returns the sum of the values in the input array, orDouble.NaN
if the array is empty.static double
StatUtils. sum(double[] values, int begin, int length)
Returns the sum of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.static double
StatUtils. sumLog(double[] values)
Returns the sum of the natural logs of the entries in the input array, orDouble.NaN
if the array is empty.static double
StatUtils. sumLog(double[] values, int begin, int length)
Returns the sum of the natural logs of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.static double
StatUtils. sumSq(double[] values)
Returns the sum of the squares of the entries in the input array, orDouble.NaN
if the array is empty.static double
StatUtils. sumSq(double[] values, int begin, int length)
Returns the sum of the squares of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.static double
StatUtils. variance(double[] values)
Returns the variance of the entries in the input array, orDouble.NaN
if the array is empty.static double
StatUtils. variance(double[] values, double mean)
Returns the variance of the entries in the input array, using the precomputed mean value.static double
StatUtils. variance(double[] values, double mean, int begin, int length)
Returns the variance of the entries in the specified portion of the input array, using the precomputed mean value.static double
StatUtils. variance(double[] values, int begin, int length)
Returns the variance of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.stat.correlation
Methods in org.apache.commons.math4.legacy.stat.correlation that throw MathIllegalArgumentException Modifier and Type Method Description protected RealMatrix
Covariance. computeCovarianceMatrix(double[][] data)
Create a covariance matrix from a rectangular array whose columns represent covariates.protected RealMatrix
Covariance. computeCovarianceMatrix(double[][] data, boolean biasCorrected)
Compute a covariance matrix from a rectangular array whose columns represent covariates.protected RealMatrix
Covariance. computeCovarianceMatrix(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns represent covariates.protected RealMatrix
Covariance. computeCovarianceMatrix(RealMatrix matrix, boolean biasCorrected)
Compute a covariance matrix from a matrix whose columns represent covariates.double
Covariance. covariance(double[] xArray, double[] yArray)
Computes the covariance between the two arrays, using the bias-corrected formula.double
Covariance. covariance(double[] xArray, double[] yArray, boolean biasCorrected)
Computes the covariance between the two arrays.Constructors in org.apache.commons.math4.legacy.stat.correlation that throw MathIllegalArgumentException Constructor Description Covariance(double[][] data)
Create a Covariance matrix from a rectangular array whose columns represent covariates.Covariance(double[][] data, boolean biasCorrected)
Create a Covariance matrix from a rectangular array whose columns represent covariates.Covariance(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns represent covariates.Covariance(RealMatrix matrix, boolean biasCorrected)
Create a covariance matrix from a matrix whose columns represent covariates.SpearmansCorrelation(RealMatrix dataMatrix, RankingAlgorithm rankingAlgorithm)
Create a SpearmansCorrelation with the given input data matrix and ranking algorithm.SpearmansCorrelation(RankingAlgorithm rankingAlgorithm)
Create a SpearmansCorrelation with the given ranking algorithm. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.stat.descriptive
Methods in org.apache.commons.math4.legacy.stat.descriptive that throw MathIllegalArgumentException Modifier and Type Method Description double
AbstractStorelessUnivariateStatistic. evaluate(double[] values)
This default implementation creates a copy of thisStorelessUnivariateStatistic
instance, callsAbstractStorelessUnivariateStatistic.clear()
on it, then callsAbstractStorelessUnivariateStatistic.incrementAll(double[])
with the specified portion of the input array, and then usesAbstractStorelessUnivariateStatistic.getResult()
to compute the return value.double
AbstractStorelessUnivariateStatistic. evaluate(double[] values, int begin, int length)
This default implementation creates a copy of thisStorelessUnivariateStatistic
instance, callsAbstractStorelessUnivariateStatistic.clear()
on it, then callsAbstractStorelessUnivariateStatistic.incrementAll(double[])
with the specified portion of the input array, and then usesAbstractStorelessUnivariateStatistic.getResult()
to compute the return value.double
AbstractUnivariateStatistic. evaluate()
Returns the result of evaluating the statistic over the stored data.double
AbstractUnivariateStatistic. evaluate(double[] values)
Returns the result of evaluating the statistic over the input array.abstract double
AbstractUnivariateStatistic. evaluate(double[] values, int begin, int length)
Returns the result of evaluating the statistic over the specified entries in the input array.double
UnivariateStatistic. evaluate(double[] values)
Returns the result of evaluating the statistic over the input array.double
UnivariateStatistic. evaluate(double[] values, int begin, int length)
Returns the result of evaluating the statistic over the specified entries in the input array.double
WeightedEvaluation. evaluate(double[] values, double[] weights)
Returns the result of evaluating the statistic over the input array, using the supplied weights.double
WeightedEvaluation. evaluate(double[] values, double[] weights, int begin, int length)
Returns the result of evaluating the statistic over the specified entries in the input array, using corresponding entries in the supplied weights array.double
DescriptiveStatistics. getPercentile(double p)
Returns an estimate for the pth percentile of the stored values.void
AbstractStorelessUnivariateStatistic. incrementAll(double[] values)
This default implementation just callsAbstractStorelessUnivariateStatistic.increment(double)
in a loop over the input array.void
AbstractStorelessUnivariateStatistic. incrementAll(double[] values, int begin, int length)
This default implementation just callsAbstractStorelessUnivariateStatistic.increment(double)
in a loop over the specified portion of the input array.void
StorelessUnivariateStatistic. incrementAll(double[] values)
Updates the internal state of the statistic to reflect addition of all values in the values array.void
StorelessUnivariateStatistic. incrementAll(double[] values, int start, int length)
Updates the internal state of the statistic to reflect addition of the values in the designated portion of the values array.void
AbstractUnivariateStatistic. setData(double[] values, int begin, int length)
Set the data array.void
DescriptiveStatistics. setPercentileImpl(UnivariateStatistic percentileImpl)
Sets the implementation to be used byDescriptiveStatistics.getPercentile(double)
.void
DescriptiveStatistics. setWindowSize(int windowSize)
WindowSize controls the number of values that contribute to the reported statistics.void
SynchronizedDescriptiveStatistics. setWindowSize(int windowSize)
WindowSize controls the number of values that contribute to the reported statistics.Constructors in org.apache.commons.math4.legacy.stat.descriptive that throw MathIllegalArgumentException Constructor Description DescriptiveStatistics(int window)
Construct aDescriptiveStatistics
instance with the specified window.SynchronizedDescriptiveStatistics(int window)
Construct an instance with finite window. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.stat.descriptive.moment
Methods in org.apache.commons.math4.legacy.stat.descriptive.moment that throw MathIllegalArgumentException Modifier and Type Method Description double
GeometricMean. evaluate(double[] values, int begin, int length)
Returns the geometric mean of the entries in the specified portion of the input array.double
Kurtosis. evaluate(double[] values, int begin, int length)
Returns the kurtosis of the entries in the specified portion of the input array.double
Mean. evaluate(double[] values, double[] weights)
Returns the weighted arithmetic mean of the entries in the input array.double
Mean. evaluate(double[] values, double[] weights, int begin, int length)
Returns the weighted arithmetic mean of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.double
Mean. evaluate(double[] values, int begin, int length)
Returns the arithmetic mean of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.double
SemiVariance. evaluate(double[] values, double cutoff)
Returns theSemiVariance
of the designated values against the cutoff, using instance properties variancDirection and biasCorrection.double
SemiVariance. evaluate(double[] values, double cutoff, SemiVariance.Direction direction)
Returns theSemiVariance
of the designated values against the cutoff in the given direction, using the current value of the biasCorrection instance property.double
SemiVariance. evaluate(double[] values, double cutoff, SemiVariance.Direction direction, boolean corrected, int start, int length)
Returns theSemiVariance
of the designated values against the cutoff in the given direction with the provided bias correction.double
SemiVariance. evaluate(double[] values, int start, int length)
Returns theSemiVariance
of the designated values against the mean, using instance properties varianceDirection and biasCorrection.double
SemiVariance. evaluate(double[] values, SemiVariance.Direction direction)
This method calculatesSemiVariance
for the entire array against the mean, using the current value of the biasCorrection instance property.double
Skewness. evaluate(double[] values, int begin, int length)
Returns the Skewness of the entries in the specified portion of the input array.double
StandardDeviation. evaluate(double[] values)
Returns the Standard Deviation of the entries in the input array, orDouble.NaN
if the array is empty.double
StandardDeviation. evaluate(double[] values, double mean)
Returns the Standard Deviation of the entries in the input array, using the precomputed mean value.double
StandardDeviation. evaluate(double[] values, double mean, int begin, int length)
Returns the Standard Deviation of the entries in the specified portion of the input array, using the precomputed mean value.double
StandardDeviation. evaluate(double[] values, int begin, int length)
Returns the Standard Deviation of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.double
Variance. evaluate(double[] values)
Returns the variance of the entries in the input array, orDouble.NaN
if the array is empty.double
Variance. evaluate(double[] values, double mean)
Returns the variance of the entries in the input array, using the precomputed mean value.double
Variance. evaluate(double[] values, double[] weights)
Returns the weighted variance of the entries in the input array.double
Variance. evaluate(double[] values, double[] weights, double mean)
Returns the weighted variance of the values in the input array, using the precomputed weighted mean value.double
Variance. evaluate(double[] values, double[] weights, double mean, int begin, int length)
Returns the weighted variance of the entries in the specified portion of the input array, using the precomputed weighted mean value.double
Variance. evaluate(double[] values, double[] weights, int begin, int length)
Returns the weighted variance of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.double
Variance. evaluate(double[] values, double mean, int begin, int length)
Returns the variance of the entries in the specified portion of the input array, using the precomputed mean value.double
Variance. evaluate(double[] values, int begin, int length)
Returns the variance of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.stat.descriptive.rank
Methods in org.apache.commons.math4.legacy.stat.descriptive.rank that throw MathIllegalArgumentException Modifier and Type Method Description double
Max. evaluate(double[] values, int begin, int length)
Returns the maximum of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.double
Min. evaluate(double[] values, int begin, int length)
Returns the minimum of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.stat.descriptive.summary
Methods in org.apache.commons.math4.legacy.stat.descriptive.summary that throw MathIllegalArgumentException Modifier and Type Method Description double
Product. evaluate(double[] values, double[] weights)
Returns the weighted product of the entries in the input array.double
Product. evaluate(double[] values, double[] weights, int begin, int length)
Returns the weighted product of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.double
Product. evaluate(double[] values, int begin, int length)
Returns the product of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.double
Sum. evaluate(double[] values, double[] weights)
The weighted sum of the entries in the input array.double
Sum. evaluate(double[] values, double[] weights, int begin, int length)
The weighted sum of the entries in the specified portion of the input array, or 0 if the designated subarray is empty.double
Sum. evaluate(double[] values, int begin, int length)
The sum of the entries in the specified portion of the input array, or 0 if the designated subarray is empty.double
SumOfLogs. evaluate(double[] values, int begin, int length)
Returns the sum of the natural logs of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty.double
SumOfSquares. evaluate(double[] values, int begin, int length)
Returns the sum of the squares of the entries in the specified portion of the input array, orDouble.NaN
if the designated subarray is empty. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.stat.inference
Methods in org.apache.commons.math4.legacy.stat.inference that throw MathIllegalArgumentException Modifier and Type Method Description protected double
TTest. tTest(double m, double mu, double v, double n)
Computes p-value for 2-sided, 1-sample t-test. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.stat.regression
Subclasses of MathIllegalArgumentException in org.apache.commons.math4.legacy.stat.regression Modifier and Type Class Description class
ModelSpecificationException
Exception thrown when a regression model is not correctly specified.Methods in org.apache.commons.math4.legacy.stat.regression that throw MathIllegalArgumentException Modifier and Type Method Description void
OLSMultipleLinearRegression. newSampleData(double[] y, double[][] x)
Loads model x and y sample data, overriding any previous sample.RegressionResults
SimpleRegression. regress(int[] variablesToInclude)
Performs a regression on data present in buffers including only regressors.RegressionResults
UpdatingMultipleLinearRegression. regress(int[] variablesToInclude)
Performs a regression on data present in buffers including only regressors.protected void
AbstractMultipleLinearRegression. validateSampleData(double[][] x, double[] y)
Validates sample data. -
Uses of MathIllegalArgumentException in org.apache.commons.math4.legacy.util
Methods in org.apache.commons.math4.legacy.util that throw MathIllegalArgumentException Modifier and Type Method Description StringBuffer
ComplexFormat. format(Object obj, StringBuffer toAppendTo, FieldPosition pos)
Formats a object to produce a string.
-