Uses of Class
org.apache.commons.math4.legacy.exception.NullArgumentException
-
Packages that use NullArgumentException Package Description org.apache.commons.math4.legacy.analysis.function Thefunction
package contains function objects that wrap the methods contained inMath
, as well as common mathematical functions such as the gaussian and sinc functions.org.apache.commons.math4.legacy.analysis.interpolation Univariate real functions interpolation algorithms.org.apache.commons.math4.legacy.analysis.polynomials Univariate real polynomials implementations, seen as differentiable univariate real functions.org.apache.commons.math4.legacy.analysis.solvers Root finding algorithms, for univariate real functions.org.apache.commons.math4.legacy.core Core math utilities.org.apache.commons.math4.legacy.filter Implementations of common discrete-time linear filters.org.apache.commons.math4.legacy.genetics This package provides Genetic Algorithms components and implementations.org.apache.commons.math4.legacy.linear Linear algebra support.org.apache.commons.math4.legacy.stat Data storage, manipulation and summary routines.org.apache.commons.math4.legacy.stat.descriptive Generic univariate summary statistic objects.org.apache.commons.math4.legacy.stat.descriptive.moment Summary statistics based on moments.org.apache.commons.math4.legacy.stat.descriptive.rank Summary statistics based on ranks.org.apache.commons.math4.legacy.stat.descriptive.summary Other summary statistics.org.apache.commons.math4.legacy.stat.inference Classes providing hypothesis testing.org.apache.commons.math4.legacy.util Convenience routines and common data structures used throughout the commons-math library. -
-
Uses of NullArgumentException in org.apache.commons.math4.legacy.analysis.function
Methods in org.apache.commons.math4.legacy.analysis.function that throw NullArgumentException Modifier and Type Method Description double[]
Gaussian.Parametric. gradient(double x, double... param)
Computes the value of the gradient atx
.double[]
HarmonicOscillator.Parametric. gradient(double x, double... param)
Computes the value of the gradient atx
.double[]
Logistic.Parametric. gradient(double x, double... param)
Computes the value of the gradient atx
.double[]
Logit.Parametric. gradient(double x, double... param)
Computes the value of the gradient atx
.double[]
Sigmoid.Parametric. gradient(double x, double... param)
Computes the value of the gradient atx
.double
Gaussian.Parametric. value(double x, double... param)
Computes the value of the Gaussian atx
.double
HarmonicOscillator.Parametric. value(double x, double... param)
Computes the value of the harmonic oscillator atx
.double
Logistic.Parametric. value(double x, double... param)
Computes the value of the sigmoid atx
.double
Logit.Parametric. value(double x, double... param)
Computes the value of the logit atx
.double
Sigmoid.Parametric. value(double x, double... param)
Computes the value of the sigmoid atx
.Constructors in org.apache.commons.math4.legacy.analysis.function that throw NullArgumentException Constructor Description StepFunction(double[] x, double[] y)
Builds a step function from a list of arguments and the corresponding values. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.analysis.interpolation
Methods in org.apache.commons.math4.legacy.analysis.interpolation that throw NullArgumentException Modifier and Type Method Description void
FieldHermiteInterpolator. addSamplePoint(T x, T[]... value)
Add a sample point.T[][]
FieldHermiteInterpolator. derivatives(T x, int order)
Interpolate value and first derivatives at a specified abscissa.MultivariateFunction
MicrosphereProjectionInterpolator. interpolate(double[][] xval, double[] yval)
Computes an interpolating function for the data set.MultivariateFunction
MultivariateInterpolator. interpolate(double[][] xval, double[] yval)
Computes an interpolating function for the data set.PiecewiseBicubicSplineInterpolatingFunction
PiecewiseBicubicSplineInterpolator. interpolate(double[] xval, double[] yval, double[][] fval)
Compute an interpolating function for the dataset.T[]
FieldHermiteInterpolator. value(T x)
Interpolate value at a specified abscissa.Constructors in org.apache.commons.math4.legacy.analysis.interpolation that throw NullArgumentException Constructor Description PiecewiseBicubicSplineInterpolatingFunction(double[] x, double[] y, double[][] f)
-
Uses of NullArgumentException in org.apache.commons.math4.legacy.analysis.polynomials
Methods in org.apache.commons.math4.legacy.analysis.polynomials that throw NullArgumentException Modifier and Type Method Description protected static double[]
PolynomialFunction. differentiate(double[] coefficients)
Returns the coefficients of the derivative of the polynomial with the given coefficients.protected static double
PolynomialFunction. evaluate(double[] coefficients, double argument)
Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.static double
PolynomialFunctionNewtonForm. evaluate(double[] a, double[] c, double z)
Evaluate the Newton polynomial using nested multiplication.DerivativeStructure
PolynomialFunction. value(DerivativeStructure t)
Simple mathematical function.protected static void
PolynomialFunctionNewtonForm. verifyInputArray(double[] a, double[] c)
Verifies that the input arrays are valid.Constructors in org.apache.commons.math4.legacy.analysis.polynomials that throw NullArgumentException Constructor Description PolynomialFunction(double[] c)
Construct a polynomial with the given coefficients.PolynomialFunctionNewtonForm(double[] a, double[] c)
Construct a Newton polynomial with the given a[] and c[].PolynomialSplineFunction(double[] knots, PolynomialFunction[] polynomials)
Construct a polynomial spline function with the given segment delimiters and interpolating polynomials. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.analysis.solvers
Methods in org.apache.commons.math4.legacy.analysis.solvers that throw NullArgumentException Modifier and Type Method Description static double[]
UnivariateSolverUtils. bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound)
This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0 andmaximumIterations
set toInteger.MAX_VALUE
.static double[]
UnivariateSolverUtils. bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound, int maximumIterations)
This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0.static boolean
UnivariateSolverUtils. isBracketing(UnivariateFunction function, double lower, double upper)
Check whether the interval bounds bracket a root.T
FieldBracketingNthOrderBrentSolver. solve(int maxEval, RealFieldUnivariateFunction<T> f, T min, T max, AllowedSolution allowedSolution)
Solve for a zero in the given interval.T
FieldBracketingNthOrderBrentSolver. solve(int maxEval, RealFieldUnivariateFunction<T> f, T min, T max, T startValue, AllowedSolution allowedSolution)
Solve for a zero in the given interval, start atstartValue
.static double
UnivariateSolverUtils. solve(UnivariateFunction function, double x0, double x1)
Convenience method to find a zero of a univariate real function.static double
UnivariateSolverUtils. solve(UnivariateFunction function, double x0, double x1, double absoluteAccuracy)
Convenience method to find a zero of a univariate real function.org.apache.commons.numbers.complex.Complex[]
LaguerreSolver. solveAllComplex(double[] coefficients, double initial)
Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.org.apache.commons.numbers.complex.Complex
LaguerreSolver. solveComplex(double[] coefficients, double initial)
Find a complex root for the polynomial with the given coefficients, starting from the given initial value.static void
UnivariateSolverUtils. verifyBracketing(UnivariateFunction function, double lower, double upper)
Check that the endpoints specify an interval and the end points bracket a root. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.core
Methods in org.apache.commons.math4.legacy.core that throw NullArgumentException Modifier and Type Method Description T
FieldElement. add(T a)
Compute this + a.T
FieldElement. divide(T a)
Compute this ÷ a.T
FieldElement. multiply(T a)
Compute this × a.T
FieldElement. subtract(T a)
Compute this - a. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.filter
Methods in org.apache.commons.math4.legacy.filter that throw NullArgumentException Modifier and Type Method Description void
KalmanFilter. correct(double[] z)
Correct the current state estimate with an actual measurement.void
KalmanFilter. correct(RealVector z)
Correct the current state estimate with an actual measurement.Constructors in org.apache.commons.math4.legacy.filter that throw NullArgumentException Constructor Description DefaultMeasurementModel(double[][] measMatrix, double[][] measNoise)
Create a newMeasurementModel
, taking double arrays as input parameters for the respective measurement matrix and noise.DefaultProcessModel(double[][] stateTransition, double[][] control, double[][] processNoise)
Create a newProcessModel
, taking double arrays as input parameters.DefaultProcessModel(double[][] stateTransition, double[][] control, double[][] processNoise, double[] initialStateEstimate, double[][] initialErrorCovariance)
Create a newProcessModel
, taking double arrays as input parameters.KalmanFilter(ProcessModel process, MeasurementModel measurement)
Creates a new Kalman filter with the given process and measurement models. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.genetics
Constructors in org.apache.commons.math4.legacy.genetics that throw NullArgumentException Constructor Description ElitisticListPopulation(List<Chromosome> chromosomes, int populationLimit, double elitismRate)
Creates a newElitisticListPopulation
instance.ListPopulation(List<Chromosome> chromosomes, int populationLimit)
Creates a new ListPopulation instance. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.linear
Methods in org.apache.commons.math4.legacy.linear that throw NullArgumentException Modifier and Type Method Description FieldVector<T>
SparseFieldVector. append(T d)
Construct a vector by appending a T to this vector.protected static void
IterativeLinearSolver. checkParameters(RealLinearOperator a, RealVector b, RealVector x0)
Performs all dimension checks on the parameters ofsolve
andsolveInPlace
, and throws an exception if one of the checks fails.protected static void
PreconditionedIterativeLinearSolver. checkParameters(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)
Performs all dimension checks on the parameters ofsolve
andsolveInPlace
, and throws an exception if one of the checks fails.protected void
AbstractFieldMatrix. checkSubMatrixIndex(int[] selectedRows, int[] selectedColumns)
Check if submatrix ranges indices are valid.static void
MatrixUtils. checkSubMatrixIndex(AnyMatrix m, int[] selectedRows, int[] selectedColumns)
Check if submatrix ranges indices are valid.void
AbstractFieldMatrix. copySubMatrix(int[] selectedRows, int[] selectedColumns, T[][] destination)
Copy a submatrix.void
AbstractRealMatrix. copySubMatrix(int[] selectedRows, int[] selectedColumns, double[][] destination)
Copy a submatrix.void
FieldMatrix. copySubMatrix(int[] selectedRows, int[] selectedColumns, T[][] destination)
Copy a submatrix.void
RealMatrix. copySubMatrix(int[] selectedRows, int[] selectedColumns, double[][] destination)
Copy a submatrix.static <T extends FieldElement<T>>
FieldMatrix<T>MatrixUtils. createColumnFieldMatrix(T[] columnData)
Creates a columnFieldMatrix
using the data from the input array.static RealMatrix
MatrixUtils. createColumnRealMatrix(double[] columnData)
Creates a columnRealMatrix
using the data from the input array.static <T extends FieldElement<T>>
FieldMatrix<T>MatrixUtils. createFieldMatrix(T[][] data)
Returns aFieldMatrix
whose entries are the values in the the input array.static <T extends FieldElement<T>>
FieldVector<T>MatrixUtils. createFieldVector(T[] data)
Creates aFieldVector
using the data from the input array.static RealMatrix
MatrixUtils. createRealMatrix(double[][] data)
Returns aRealMatrix
whose entries are the values in the the input array.static RealVector
MatrixUtils. createRealVector(double[] data)
Creates aRealVector
using the data from the input array.static <T extends FieldElement<T>>
FieldMatrix<T>MatrixUtils. createRowFieldMatrix(T[] rowData)
Create a rowFieldMatrix
using the data from the input array.static RealMatrix
MatrixUtils. createRowRealMatrix(double[] rowData)
Create a rowRealMatrix
using the data from the input array.protected static <T extends FieldElement<T>>
Field<T>AbstractFieldMatrix. extractField(T[][] d)
Get the elements type from an array.FieldMatrix<T>
AbstractFieldMatrix. getSubMatrix(int[] selectedRows, int[] selectedColumns)
Get a submatrix.RealMatrix
AbstractRealMatrix. getSubMatrix(int[] selectedRows, int[] selectedColumns)
Gets a submatrix.FieldMatrix<T>
FieldMatrix. getSubMatrix(int[] selectedRows, int[] selectedColumns)
Get a submatrix.RealMatrix
RealMatrix. getSubMatrix(int[] selectedRows, int[] selectedColumns)
Gets a submatrix.static RealMatrix
MatrixUtils. inverse(RealMatrix matrix)
Computes the inverse of the given matrix.static RealMatrix
MatrixUtils. inverse(RealMatrix matrix, double threshold)
Computes the inverse of the given matrix.FieldVector<T>
ArrayFieldVector. mapAdd(T d)
Map an addition operation to each entry.FieldVector<T>
FieldVector. mapAdd(T d)
Map an addition operation to each entry.FieldVector<T>
SparseFieldVector. mapAdd(T d)
Map an addition operation to each entry.FieldVector<T>
ArrayFieldVector. mapAddToSelf(T d)
Map an addition operation to each entry.FieldVector<T>
FieldVector. mapAddToSelf(T d)
Map an addition operation to each entry.FieldVector<T>
SparseFieldVector. mapAddToSelf(T d)
Map an addition operation to each entry.FieldVector<T>
ArrayFieldVector. mapDivide(T d)
Map a division operation to each entry.FieldVector<T>
FieldVector. mapDivide(T d)
Map a division operation to each entry.FieldVector<T>
SparseFieldVector. mapDivide(T d)
Map a division operation to each entry.FieldVector<T>
ArrayFieldVector. mapDivideToSelf(T d)
Map a division operation to each entry.FieldVector<T>
FieldVector. mapDivideToSelf(T d)
Map a division operation to each entry.FieldVector<T>
SparseFieldVector. mapDivideToSelf(T d)
Map a division operation to each entry.FieldVector<T>
ArrayFieldVector. mapMultiply(T d)
Map a multiplication operation to each entry.FieldVector<T>
FieldVector. mapMultiply(T d)
Map a multiplication operation to each entry.FieldVector<T>
SparseFieldVector. mapMultiply(T d)
Map a multiplication operation to each entry.FieldVector<T>
ArrayFieldVector. mapMultiplyToSelf(T d)
Map a multiplication operation to each entry.FieldVector<T>
FieldVector. mapMultiplyToSelf(T d)
Map a multiplication operation to each entry.FieldVector<T>
SparseFieldVector. mapMultiplyToSelf(T d)
Map a multiplication operation to each entry.FieldVector<T>
ArrayFieldVector. mapSubtract(T d)
Map a subtraction operation to each entry.FieldVector<T>
FieldVector. mapSubtract(T d)
Map a subtraction operation to each entry.FieldVector<T>
SparseFieldVector. mapSubtract(T d)
Map a subtraction operation to each entry.FieldVector<T>
ArrayFieldVector. mapSubtractToSelf(T d)
Map a subtraction operation to each entry.FieldVector<T>
FieldVector. mapSubtractToSelf(T d)
Map a subtraction operation to each entry.FieldVector<T>
SparseFieldVector. mapSubtractToSelf(T d)
Map a subtraction operation to each entry.void
SparseFieldVector. setEntry(int index, T value)
Set a single element.void
AbstractFieldMatrix. setSubMatrix(T[][] subMatrix, int row, int column)
Replace the submatrix starting at(row, column)
using data in the inputsubMatrix
array.void
AbstractRealMatrix. setSubMatrix(double[][] subMatrix, int row, int column)
Replace the submatrix starting atrow, column
using data in the inputsubMatrix
array.void
Array2DRowFieldMatrix. setSubMatrix(T[][] subMatrix, int row, int column)
Replace the submatrix starting at(row, column)
using data in the inputsubMatrix
array.void
BlockFieldMatrix. setSubMatrix(T[][] subMatrix, int row, int column)
Replace the submatrix starting at(row, column)
using data in the inputsubMatrix
array.void
BlockRealMatrix. setSubMatrix(double[][] subMatrix, int row, int column)
Replace the submatrix starting atrow, column
using data in the inputsubMatrix
array.void
FieldMatrix. setSubMatrix(T[][] subMatrix, int row, int column)
Replace the submatrix starting at(row, column)
using data in the inputsubMatrix
array.void
RealMatrix. setSubMatrix(double[][] subMatrix, int row, int column)
Replace the submatrix starting atrow, column
using data in the inputsubMatrix
array.RealVector
IterativeLinearSolver. solve(RealLinearOperator a, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
IterativeLinearSolver. solve(RealLinearOperator a, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealLinearOperator m, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, boolean goodb, double shift)
Returns an estimate of the solution to the linear system (A - shift · I) · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealVector b, boolean goodb, double shift)
Returns the solution to the system (A - shift · I) · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealVector b, RealVector x)
Returns an estimate of the solution to the linear system A · x = b.RealVector
ConjugateGradient. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.abstract RealVector
IterativeLinearSolver. solveInPlace(RealLinearOperator a, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.abstract RealVector
PreconditionedIterativeLinearSolver. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solveInPlace(RealLinearOperator a, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x, boolean goodb, double shift)
Returns an estimate of the solution to the linear system (A - shift · I) · x = b.RealVector
SymmLQ. solveInPlace(RealLinearOperator a, RealVector b, RealVector x)
Returns an estimate of the solution to the linear system A · x = b.Constructors in org.apache.commons.math4.legacy.linear that throw NullArgumentException Constructor Description Array2DRowFieldMatrix(Field<T> field, T[][] d)
Create a newFieldMatrix<T>
using the input array as the underlying data array.Array2DRowFieldMatrix(Field<T> field, T[][] d, boolean copyArray)
Create a newFieldMatrix<T>
using the input array as the underlying data array.Array2DRowFieldMatrix(T[][] d)
Create a newFieldMatrix<T>
using the input array as the underlying data array.Array2DRowFieldMatrix(T[][] d, boolean copyArray)
Create a newFieldMatrix<T>
using the input array as the underlying data array.ArrayFieldVector(Field<T> field, T[] d)
Construct a vector from an array, copying the input array.ArrayFieldVector(Field<T> field, T[] d, boolean copyArray)
Create a new ArrayFieldVector using the input array as the underlying data array.ArrayFieldVector(Field<T> field, T[] d, int pos, int size)
Construct a vector from part of a array.ArrayFieldVector(Field<T> field, T[] v1, T[] v2)
Construct a vector by appending one vector to another vector.ArrayFieldVector(ArrayFieldVector<T> v)
Construct a vector from another vector, using a deep copy.ArrayFieldVector(ArrayFieldVector<T> v, boolean deep)
Construct a vector from another vector.ArrayFieldVector(FieldVector<T> v)
Construct a vector from another vector, using a deep copy.ArrayFieldVector(FieldVector<T> v1, FieldVector<T> v2)
Construct a vector by appending one vector to another vector.ArrayFieldVector(FieldVector<T> v1, T[] v2)
Construct a vector by appending one vector to another vector.ArrayFieldVector(T[] d)
Construct a vector from an array, copying the input array.ArrayFieldVector(T[] d, boolean copyArray)
Create a new ArrayFieldVector using the input array as the underlying data array.ArrayFieldVector(T[] d, int pos, int size)
Construct a vector from part of a array.ArrayFieldVector(T[] v1, FieldVector<T> v2)
Construct a vector by appending one vector to another vector.ArrayFieldVector(T[] v1, T[] v2)
Construct a vector by appending one vector to another vector.ArrayRealVector(double[] d, boolean copyArray)
Create a new ArrayRealVector using the input array as the underlying data array.ArrayRealVector(double[] d, int pos, int size)
Construct a vector from part of a array.ArrayRealVector(Double[] d, int pos, int size)
Construct a vector from part of an array.ArrayRealVector(ArrayRealVector v)
Construct a vector from another vector, using a deep copy.ArrayRealVector(RealVector v)
Construct a vector from another vector, using a deep copy.ConjugateGradient(IterationManager manager, double delta, boolean check)
Creates a new instance of this class, with default stopping criterion and custom iteration manager.DiagonalMatrix(double[] d, boolean copyArray)
Creates a matrix using the input array as the underlying data.IterativeLinearSolver(IterationManager manager)
Creates a new instance of this class, with custom iteration manager.PreconditionedIterativeLinearSolver(IterationManager manager)
Creates a new instance of this class, with custom iteration manager.SparseFieldVector(Field<T> field, T[] values)
Create from a Field array. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.stat
Methods in org.apache.commons.math4.legacy.stat that throw NullArgumentException Modifier and Type Method Description void
Frequency. merge(Collection<Frequency<T>> others)
Merge aCollection
ofFrequency
objects into this instance.void
Frequency. merge(Frequency<T> other)
Merge another Frequency object's counts into this instance. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.stat.descriptive
Methods in org.apache.commons.math4.legacy.stat.descriptive that throw NullArgumentException Modifier and Type Method Description static void
DescriptiveStatistics. copy(DescriptiveStatistics source, DescriptiveStatistics dest)
Copies source to dest.static void
SummaryStatistics. copy(SummaryStatistics source, SummaryStatistics dest)
Copies source to dest.static void
SynchronizedDescriptiveStatistics. copy(SynchronizedDescriptiveStatistics source, SynchronizedDescriptiveStatistics dest)
Copies source to dest.static void
SynchronizedSummaryStatistics. copy(SynchronizedSummaryStatistics source, SynchronizedSummaryStatistics dest)
Copies source to dest.Constructors in org.apache.commons.math4.legacy.stat.descriptive that throw NullArgumentException Constructor Description AggregateSummaryStatistics(SummaryStatistics prototypeStatistics)
Initializes a new AggregateSummaryStatistics with the specified statistics object as a prototype for contributing statistics and for the internal aggregate statistics.DescriptiveStatistics(DescriptiveStatistics original)
Copy constructor.SummaryStatistics(SummaryStatistics original)
A copy constructor.SynchronizedDescriptiveStatistics(SynchronizedDescriptiveStatistics original)
A copy constructor.SynchronizedSummaryStatistics(SynchronizedSummaryStatistics original)
A copy constructor. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.stat.descriptive.moment
Methods in org.apache.commons.math4.legacy.stat.descriptive.moment that throw NullArgumentException Modifier and Type Method Description static void
GeometricMean. copy(GeometricMean source, GeometricMean dest)
Copies source to dest.static void
Kurtosis. copy(Kurtosis source, Kurtosis dest)
Copies source to dest.static void
Mean. copy(Mean source, Mean dest)
Copies source to dest.static void
SecondMoment. copy(SecondMoment source, SecondMoment dest)
Copies source to dest.static void
SemiVariance. copy(SemiVariance source, SemiVariance dest)
Copies source to dest.static void
Skewness. copy(Skewness source, Skewness dest)
Copies source to dest.static void
StandardDeviation. copy(StandardDeviation source, StandardDeviation dest)
Copies source to dest.static void
Variance. copy(Variance source, Variance dest)
Copies source to dest.Constructors in org.apache.commons.math4.legacy.stat.descriptive.moment that throw NullArgumentException Constructor Description GeometricMean(GeometricMean original)
Copy constructor, creates a newGeometricMean
identical to theoriginal
.Kurtosis(Kurtosis original)
Copy constructor, creates a newKurtosis
identical to theoriginal
.Mean(Mean original)
Copy constructor, creates a newMean
identical to theoriginal
.SecondMoment(SecondMoment original)
Copy constructor, creates a newSecondMoment
identical to theoriginal
.SemiVariance(SemiVariance original)
Copy constructor, creates a newSemiVariance
identical to theoriginal
.Skewness(Skewness original)
Copy constructor, creates a newSkewness
identical to theoriginal
.StandardDeviation(StandardDeviation original)
Copy constructor, creates a newStandardDeviation
identical to theoriginal
.Variance(Variance original)
Copy constructor, creates a newVariance
identical to theoriginal
. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.stat.descriptive.rank
Methods in org.apache.commons.math4.legacy.stat.descriptive.rank that throw NullArgumentException Modifier and Type Method Description static void
Max. copy(Max source, Max dest)
Copies source to dest.static void
Min. copy(Min source, Min dest)
Copies source to dest.Constructors in org.apache.commons.math4.legacy.stat.descriptive.rank that throw NullArgumentException Constructor Description Max(Max original)
Copy constructor, creates a newMax
identical to theoriginal
.Median(Median original)
Copy constructor, creates a newMedian
identical.Min(Min original)
Copy constructor, creates a newMin
identical to theoriginal
. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.stat.descriptive.summary
Methods in org.apache.commons.math4.legacy.stat.descriptive.summary that throw NullArgumentException Modifier and Type Method Description static void
Product. copy(Product source, Product dest)
Copies source to dest.static void
Sum. copy(Sum source, Sum dest)
Copies source to dest.static void
SumOfLogs. copy(SumOfLogs source, SumOfLogs dest)
Copies source to dest.static void
SumOfSquares. copy(SumOfSquares source, SumOfSquares dest)
Copies source to dest.Constructors in org.apache.commons.math4.legacy.stat.descriptive.summary that throw NullArgumentException Constructor Description Product(Product original)
Copy constructor, creates a newProduct
identical to theoriginal
.Sum(Sum original)
Copy constructor, creates a newSum
identical to theoriginal
.SumOfLogs(SumOfLogs original)
Copy constructor, creates a newSumOfLogs
identical to theoriginal
.SumOfSquares(SumOfSquares original)
Copy constructor, creates a newSumOfSquares
identical to theoriginal
. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.stat.inference
Methods in org.apache.commons.math4.legacy.stat.inference that throw NullArgumentException Modifier and Type Method Description double
OneWayAnova. anovaFValue(Collection<double[]> categoryData)
Computes the ANOVA F-value for a collection ofdouble[]
arrays.double
OneWayAnova. anovaPValue(Collection<double[]> categoryData)
Computes the ANOVA P-value for a collection ofdouble[]
arrays.double
OneWayAnova. anovaPValue(Collection<SummaryStatistics> categoryData, boolean allowOneElementData)
Computes the ANOVA P-value for a collection ofSummaryStatistics
.boolean
OneWayAnova. anovaTest(Collection<double[]> categoryData, double alpha)
Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.double
ChiSquareTest. chiSquare(long[][] counts)
Computes the Chi-Square statistic associated with a chi-square test of independence based on the inputcounts
array, viewed as a two-way table.static double
InferenceTestUtils. chiSquare(long[][] counts)
double
ChiSquareTest. chiSquareTest(long[][] counts)
Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the inputcounts
array, viewed as a two-way table.boolean
ChiSquareTest. chiSquareTest(long[][] counts, double alpha)
Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance levelalpha
.static double
InferenceTestUtils. chiSquareTest(long[][] counts)
static boolean
InferenceTestUtils. chiSquareTest(long[][] counts, double alpha)
static double
InferenceTestUtils. homoscedasticT(double[] sample1, double[] sample2)
static double
InferenceTestUtils. homoscedasticT(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
double
TTest. homoscedasticT(double[] sample1, double[] sample2)
Computes a 2-sample t statistic, under the hypothesis of equal subpopulation variances.double
TTest. homoscedasticT(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Computes a 2-sample t statistic, comparing the means of the datasets described by twoStatisticalSummary
instances, under the assumption of equal subpopulation variances.static double
InferenceTestUtils. homoscedasticTTest(double[] sample1, double[] sample2)
static boolean
InferenceTestUtils. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
static double
InferenceTestUtils. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
double
TTest. homoscedasticTTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.boolean
TTest. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsample1
andsample2
are drawn from populations with the same mean, with significance levelalpha
, assuming that the subpopulation variances are equal.double
TTest. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.static double
InferenceTestUtils. kolmogorovSmirnovStatistic(double[] x, double[] y)
static double
InferenceTestUtils. kolmogorovSmirnovStatistic(org.apache.commons.statistics.distribution.ContinuousDistribution dist, double[] data)
static double
InferenceTestUtils. kolmogorovSmirnovTest(double[] x, double[] y)
static double
InferenceTestUtils. kolmogorovSmirnovTest(double[] x, double[] y, boolean strict)
static double
InferenceTestUtils. kolmogorovSmirnovTest(org.apache.commons.statistics.distribution.ContinuousDistribution dist, double[] data)
static double
InferenceTestUtils. kolmogorovSmirnovTest(org.apache.commons.statistics.distribution.ContinuousDistribution dist, double[] data, boolean strict)
static boolean
InferenceTestUtils. kolmogorovSmirnovTest(org.apache.commons.statistics.distribution.ContinuousDistribution dist, double[] data, double alpha)
double
MannWhitneyUTest. mannWhitneyU(double[] x, double[] y)
Computes the Mann-Whitney U statistic comparing mean for two independent samples possibly of different length.double
MannWhitneyUTest. mannWhitneyUTest(double[] x, double[] y)
Returns the asymptotic observed significance level, or p-value, associated with a Mann-Whitney U statistic comparing mean for two independent samples.static double
InferenceTestUtils. oneWayAnovaFValue(Collection<double[]> categoryData)
static double
InferenceTestUtils. oneWayAnovaPValue(Collection<double[]> categoryData)
static boolean
InferenceTestUtils. oneWayAnovaTest(Collection<double[]> categoryData, double alpha)
static double
InferenceTestUtils. pairedT(double[] sample1, double[] sample2)
double
TTest. pairedT(double[] sample1, double[] sample2)
Computes a paired, 2-sample t-statistic based on the data in the input arrays.static double
InferenceTestUtils. pairedTTest(double[] sample1, double[] sample2)
static boolean
InferenceTestUtils. pairedTTest(double[] sample1, double[] sample2, double alpha)
double
TTest. pairedTTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.boolean
TTest. pairedTTest(double[] sample1, double[] sample2, double alpha)
Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences betweensample1
andsample2
is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance levelalpha
.static double
InferenceTestUtils. t(double[] sample1, double[] sample2)
static double
InferenceTestUtils. t(double mu, double[] observed)
static double
InferenceTestUtils. t(double mu, StatisticalSummary sampleStats)
static double
InferenceTestUtils. t(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
double
TTest. t(double[] sample1, double[] sample2)
Computes a 2-sample t statistic, without the hypothesis of equal subpopulation variances.double
TTest. t(double mu, double[] observed)
Computes a t statistic given observed values and a comparison constant.double
TTest. t(double mu, StatisticalSummary sampleStats)
double
TTest. t(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Computes a 2-sample t statistic, comparing the means of the datasets described by twoStatisticalSummary
instances, without the assumption of equal subpopulation variances.static double
InferenceTestUtils. tTest(double[] sample1, double[] sample2)
static boolean
InferenceTestUtils. tTest(double[] sample1, double[] sample2, double alpha)
static double
InferenceTestUtils. tTest(double mu, double[] sample)
static boolean
InferenceTestUtils. tTest(double mu, double[] sample, double alpha)
static double
InferenceTestUtils. tTest(double mu, StatisticalSummary sampleStats)
static boolean
InferenceTestUtils. tTest(double mu, StatisticalSummary sampleStats, double alpha)
static double
InferenceTestUtils. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
static boolean
InferenceTestUtils. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
double
TTest. tTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.boolean
TTest. tTest(double[] sample1, double[] sample2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsample1
andsample2
are drawn from populations with the same mean, with significance levelalpha
.double
TTest. tTest(double mu, double[] sample)
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constantmu
.boolean
TTest. tTest(double mu, double[] sample, double alpha)
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from whichsample
is drawn equalsmu
.double
TTest. tTest(double mu, StatisticalSummary sampleStats)
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described bysampleStats
with the constantmu
.boolean
TTest. tTest(double mu, StatisticalSummary sampleStats, double alpha)
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described bystats
is drawn equalsmu
.double
TTest. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.boolean
TTest. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsampleStats1
andsampleStats2
describe datasets drawn from populations with the same mean, with significance levelalpha
.double
WilcoxonSignedRankTest. wilcoxonSignedRank(double[] x, double[] y)
Computes the Wilcoxon signed ranked statistic comparing mean for two related samples or repeated measurements on a single sample.double
WilcoxonSignedRankTest. wilcoxonSignedRankTest(double[] x, double[] y, boolean exactPValue)
Returns the observed significance level, or p-value, associated with a Wilcoxon signed ranked statistic comparing mean for two related samples or repeated measurements on a single sample. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.util
Methods in org.apache.commons.math4.legacy.util that throw NullArgumentException Modifier and Type Method Description static ComplexFormat
ComplexFormat. getInstance(String imaginaryCharacter, Locale locale)
Returns the default complex format for the given locale.Constructors in org.apache.commons.math4.legacy.util that throw NullArgumentException Constructor Description ComplexFormat(String imaginaryCharacter)
Create an instance with a custom imaginary character, and the default number format for both real and imaginary parts.ComplexFormat(String imaginaryCharacter, NumberFormat format)
Create an instance with a custom imaginary character, and a custom number format for both real and imaginary parts.ComplexFormat(String imaginaryCharacter, NumberFormat realFormat, NumberFormat imaginaryFormat)
Create an instance with a custom imaginary character, a custom number format for the real part, and a custom number format for the imaginary part.ComplexFormat(NumberFormat format)
Create an instance with a custom number format for both real and imaginary parts.ComplexFormat(NumberFormat realFormat, NumberFormat imaginaryFormat)
Create an instance with a custom number format for the real part and a custom number format for the imaginary part.
-