001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math4.legacy.optim.linear; 018 019import java.util.Collection; 020import java.util.Collections; 021 022import org.apache.commons.math4.legacy.exception.TooManyIterationsException; 023import org.apache.commons.math4.legacy.optim.OptimizationData; 024import org.apache.commons.math4.legacy.optim.PointValuePair; 025import org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer; 026 027/** 028 * Base class for implementing linear optimizers. 029 * 030 * @since 3.1 031 */ 032public abstract class LinearOptimizer 033 extends MultivariateOptimizer { 034 /** 035 * Linear objective function. 036 */ 037 private LinearObjectiveFunction function; 038 /** 039 * Linear constraints. 040 */ 041 private Collection<LinearConstraint> linearConstraints; 042 /** 043 * Whether to restrict the variables to non-negative values. 044 */ 045 private boolean nonNegative; 046 047 /** 048 * Simple constructor with default settings. 049 * 050 */ 051 protected LinearOptimizer() { 052 super(null); // No convergence checker. 053 } 054 055 /** 056 * @return {@code true} if the variables are restricted to non-negative values. 057 */ 058 protected boolean isRestrictedToNonNegative() { 059 return nonNegative; 060 } 061 062 /** 063 * @return the optimization type. 064 */ 065 protected LinearObjectiveFunction getFunction() { 066 return function; 067 } 068 069 /** 070 * @return the optimization type. 071 */ 072 protected Collection<LinearConstraint> getConstraints() { 073 return Collections.unmodifiableCollection(linearConstraints); 074 } 075 076 /** 077 * {@inheritDoc} 078 * 079 * @param optData Optimization data. In addition to those documented in 080 * {@link MultivariateOptimizer#parseOptimizationData(OptimizationData[]) 081 * MultivariateOptimizer}, this method will register the following data: 082 * <ul> 083 * <li>{@link LinearObjectiveFunction}</li> 084 * <li>{@link LinearConstraintSet}</li> 085 * <li>{@link NonNegativeConstraint}</li> 086 * </ul> 087 * @return {@inheritDoc} 088 * @throws TooManyIterationsException if the maximal number of 089 * iterations is exceeded. 090 */ 091 @Override 092 public PointValuePair optimize(OptimizationData... optData) 093 throws TooManyIterationsException { 094 // Set up base class and perform computation. 095 return super.optimize(optData); 096 } 097 098 /** 099 * Scans the list of (required and optional) optimization data that 100 * characterize the problem. 101 * 102 * @param optData Optimization data. 103 * The following data will be looked for: 104 * <ul> 105 * <li>{@link LinearObjectiveFunction}</li> 106 * <li>{@link LinearConstraintSet}</li> 107 * <li>{@link NonNegativeConstraint}</li> 108 * </ul> 109 */ 110 @Override 111 protected void parseOptimizationData(OptimizationData... optData) { 112 // Allow base class to register its own data. 113 super.parseOptimizationData(optData); 114 115 // The existing values (as set by the previous call) are reused if 116 // not provided in the argument list. 117 for (OptimizationData data : optData) { 118 if (data instanceof LinearObjectiveFunction) { 119 function = (LinearObjectiveFunction) data; 120 continue; 121 } 122 if (data instanceof LinearConstraintSet) { 123 linearConstraints = ((LinearConstraintSet) data).getConstraints(); 124 continue; 125 } 126 if (data instanceof NonNegativeConstraint) { 127 nonNegative = ((NonNegativeConstraint) data).isRestrictedToNonNegative(); 128 continue; 129 } 130 } 131 } 132}