BicubicInterpolatingFunction.BicubicFunction(double[], double, double, boolean) | | 0% | | 0% | 6 | 6 | 32 | 32 | 1 | 1 |
value(double, double) | | 0% | | 0% | 5 | 5 | 11 | 11 | 1 | 1 |
lambda$new$1(double[][], double, double, double) | | 0% | | n/a | 1 | 1 | 6 | 6 | 1 | 1 |
lambda$new$0(double[][], double, double, double) | | 0% | | n/a | 1 | 1 | 6 | 6 | 1 | 1 |
lambda$new$4(double[][], double, double, double, double) | | 0% | | n/a | 1 | 1 | 5 | 5 | 1 | 1 |
lambda$new$3(double[][], double, double, double) | | 0% | | n/a | 1 | 1 | 5 | 5 | 1 | 1 |
lambda$new$2(double[][], double, double, double) | | 0% | | n/a | 1 | 1 | 5 | 5 | 1 | 1 |
apply(double[], int, double[], int, double[][]) | | 0% | | 0% | 2 | 2 | 6 | 6 | 1 | 1 |
sumOfProducts(double[], double[], int) | | 0% | | 0% | 2 | 2 | 4 | 4 | 1 | 1 |
partialDerivativeX() | | 0% | | n/a | 1 | 1 | 1 | 1 | 1 | 1 |
partialDerivativeY() | | 0% | | n/a | 1 | 1 | 1 | 1 | 1 | 1 |
partialDerivativeXX() | | 0% | | n/a | 1 | 1 | 1 | 1 | 1 | 1 |
partialDerivativeYY() | | 0% | | n/a | 1 | 1 | 1 | 1 | 1 | 1 |
partialDerivativeXY() | | 0% | | n/a | 1 | 1 | 1 | 1 | 1 | 1 |