AbstractRealDistribution.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math4.legacy.distribution;

import org.apache.commons.statistics.distribution.ContinuousDistribution;
import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils;
import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.InverseTransformContinuousSampler;
import org.apache.commons.math4.core.jdkmath.JdkMath;

/**
 * Base class for probability distributions on the reals.
 * Default implementations are provided for some of the methods
 * that do not vary from distribution to distribution.
 *
 * <p>
 * This base class provides a default factory method for creating
 * a {@link org.apache.commons.statistics.distribution.ContinuousDistribution.Sampler
 * sampler instance} that uses the
 * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling">
 * inversion method</a> for generating random samples that follow the
 * distribution.
 * </p>
 *
 * @since 3.0
 */
public abstract class AbstractRealDistribution
    implements ContinuousDistribution {
    /** Default absolute accuracy for inverse cumulative computation. */
    public static final double SOLVER_DEFAULT_ABSOLUTE_ACCURACY = 1e-6;

    /**
     * For a random variable {@code X} whose values are distributed according
     * to this distribution, this method returns {@code P(x0 < X <= x1)}.
     *
     * @param x0 Lower bound (excluded).
     * @param x1 Upper bound (included).
     * @return the probability that a random variable with this distribution
     * takes a value between {@code x0} and {@code x1}, excluding the lower
     * and including the upper endpoint.
     * @throws NumberIsTooLargeException if {@code x0 > x1}.
     *
     * The default implementation uses the identity
     * {@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)}
     *
     * @since 3.1
     */
    @Override
    public double probability(double x0,
                              double x1) {
        if (x0 > x1) {
            throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT,
                                                x0, x1, true);
        }
        return cumulativeProbability(x1) - cumulativeProbability(x0);
    }

    /**
     * {@inheritDoc}
     *
     * The default implementation returns
     * <ul>
     * <li>{@link #getSupportLowerBound()} for {@code p = 0},</li>
     * <li>{@link #getSupportUpperBound()} for {@code p = 1}.</li>
     * </ul>
     */
    @Override
    public double inverseCumulativeProbability(final double p) throws OutOfRangeException {
        /*
         * IMPLEMENTATION NOTES
         * --------------------
         * Where applicable, use is made of the one-sided Chebyshev inequality
         * to bracket the root. This inequality states that
         * P(X - mu >= k * sig) <= 1 / (1 + k^2),
         * mu: mean, sig: standard deviation. Equivalently
         * 1 - P(X < mu + k * sig) <= 1 / (1 + k^2),
         * F(mu + k * sig) >= k^2 / (1 + k^2).
         *
         * For k = sqrt(p / (1 - p)), we find
         * F(mu + k * sig) >= p,
         * and (mu + k * sig) is an upper-bound for the root.
         *
         * Then, introducing Y = -X, mean(Y) = -mu, sd(Y) = sig, and
         * P(Y >= -mu + k * sig) <= 1 / (1 + k^2),
         * P(-X >= -mu + k * sig) <= 1 / (1 + k^2),
         * P(X <= mu - k * sig) <= 1 / (1 + k^2),
         * F(mu - k * sig) <= 1 / (1 + k^2).
         *
         * For k = sqrt((1 - p) / p), we find
         * F(mu - k * sig) <= p,
         * and (mu - k * sig) is a lower-bound for the root.
         *
         * In cases where the Chebyshev inequality does not apply, geometric
         * progressions 1, 2, 4, ... and -1, -2, -4, ... are used to bracket
         * the root.
         */
        if (p < 0.0 || p > 1.0) {
            throw new OutOfRangeException(p, 0, 1);
        }

        double lowerBound = getSupportLowerBound();
        if (p == 0.0) {
            return lowerBound;
        }

        double upperBound = getSupportUpperBound();
        if (p == 1.0) {
            return upperBound;
        }

        final double mu = getMean();
        final double sig = JdkMath.sqrt(getVariance());
        final boolean chebyshevApplies;
        chebyshevApplies = !(Double.isInfinite(mu) || Double.isNaN(mu) ||
                             Double.isInfinite(sig) || Double.isNaN(sig));

        if (lowerBound == Double.NEGATIVE_INFINITY) {
            if (chebyshevApplies) {
                lowerBound = mu - sig * JdkMath.sqrt((1. - p) / p);
            } else {
                lowerBound = -1.0;
                while (cumulativeProbability(lowerBound) >= p) {
                    lowerBound *= 2.0;
                }
            }
        }

        if (upperBound == Double.POSITIVE_INFINITY) {
            if (chebyshevApplies) {
                upperBound = mu + sig * JdkMath.sqrt(p / (1. - p));
            } else {
                upperBound = 1.0;
                while (cumulativeProbability(upperBound) < p) {
                    upperBound *= 2.0;
                }
            }
        }

        final UnivariateFunction toSolve = new UnivariateFunction() {
            /** {@inheritDoc} */
            @Override
            public double value(final double x) {
                return cumulativeProbability(x) - p;
            }
        };

        return UnivariateSolverUtils.solve(toSolve,
                                           lowerBound,
                                           upperBound,
                                           getSolverAbsoluteAccuracy());
    }

    /**
     * Returns the solver absolute accuracy for inverse cumulative computation.
     * You can override this method in order to use a Brent solver with an
     * absolute accuracy different from the default.
     *
     * @return the maximum absolute error in inverse cumulative probability estimates
     */
    protected double getSolverAbsoluteAccuracy() {
        return SOLVER_DEFAULT_ABSOLUTE_ACCURACY;
    }

    /**
     * {@inheritDoc}
     * <p>
     * The default implementation simply computes the logarithm of {@code density(x)}.
     */
    @Override
    public double logDensity(double x) {
        return JdkMath.log(density(x));
    }

    /**
     * Utility function for allocating an array and filling it with {@code n}
     * samples generated by the given {@code sampler}.
     *
     * @param n Number of samples.
     * @param sampler Sampler.
     * @return an array of size {@code n}.
     */
    public static double[] sample(int n,
                                  ContinuousDistribution.Sampler sampler) {
        final double[] samples = new double[n];
        for (int i = 0; i < n; i++) {
            samples[i] = sampler.sample();
        }
        return samples;
    }

    /**{@inheritDoc} */
    @Override
    public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
        // Inversion method distribution sampler.
        return InverseTransformContinuousSampler.of(rng, this::inverseCumulativeProbability)::sample;
    }
}