MixtureMultivariateRealDistribution.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.distribution;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.MathArithmeticException;
import org.apache.commons.math4.legacy.exception.NotPositiveException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.math4.legacy.core.Pair;
/**
* Class for representing <a href="http://en.wikipedia.org/wiki/Mixture_model">
* mixture model</a> distributions.
*
* @param <T> Type of the mixture components.
*
* @since 3.1
*/
public class MixtureMultivariateRealDistribution<T extends MultivariateRealDistribution>
extends AbstractMultivariateRealDistribution {
/** Normalized weight of each mixture component. */
private final double[] weight;
/** Mixture components. */
private final List<T> distribution;
/**
* Creates a mixture model from a list of distributions and their
* associated weights.
*
* @param components Distributions from which to sample.
* @throws NotPositiveException if any of the weights is negative.
* @throws DimensionMismatchException if not all components have the same
* number of variables.
*/
public MixtureMultivariateRealDistribution(List<Pair<Double, T>> components) {
super(components.get(0).getSecond().getDimension());
final int numComp = components.size();
final int dim = getDimension();
double weightSum = 0;
for (int i = 0; i < numComp; i++) {
final Pair<Double, T> comp = components.get(i);
if (comp.getSecond().getDimension() != dim) {
throw new DimensionMismatchException(comp.getSecond().getDimension(), dim);
}
if (comp.getFirst() < 0) {
throw new NotPositiveException(comp.getFirst());
}
weightSum += comp.getFirst();
}
// Check for overflow.
if (Double.isInfinite(weightSum)) {
throw new MathArithmeticException(LocalizedFormats.OVERFLOW);
}
// Store each distribution and its normalized weight.
distribution = new ArrayList<>();
weight = new double[numComp];
for (int i = 0; i < numComp; i++) {
final Pair<Double, T> comp = components.get(i);
weight[i] = comp.getFirst() / weightSum;
distribution.add(comp.getSecond());
}
}
/** {@inheritDoc} */
@Override
public double density(final double[] values) {
double p = 0;
for (int i = 0; i < weight.length; i++) {
p += weight[i] * distribution.get(i).density(values);
}
return p;
}
/**
* Gets the distributions that make up the mixture model.
*
* @return the component distributions and associated weights.
*/
public List<Pair<Double, T>> getComponents() {
final List<Pair<Double, T>> list = new ArrayList<>(weight.length);
for (int i = 0; i < weight.length; i++) {
list.add(new Pair<>(weight[i], distribution.get(i)));
}
return list;
}
/** {@inheritDoc} */
@Override
public MultivariateRealDistribution.Sampler createSampler(UniformRandomProvider rng) {
return new MixtureSampler(rng);
}
/**
* Sampler.
*/
private final class MixtureSampler implements MultivariateRealDistribution.Sampler {
/** RNG. */
private final UniformRandomProvider rng;
/** Sampler for each of the distribution in the mixture. */
private final MultivariateRealDistribution.Sampler[] samplers;
/**
* @param generator RNG.
*/
MixtureSampler(UniformRandomProvider generator) {
rng = generator;
samplers = new MultivariateRealDistribution.Sampler[weight.length];
for (int i = 0; i < weight.length; i++) {
samplers[i] = distribution.get(i).createSampler(rng);
}
}
/** {@inheritDoc} */
@Override
public double[] sample() {
// Sampled values.
double[] vals = null;
// Determine which component to sample from.
final double randomValue = rng.nextDouble();
double sum = 0;
for (int i = 0; i < weight.length; i++) {
sum += weight[i];
if (randomValue <= sum) {
// pick model i
vals = samplers[i].sample();
break;
}
}
if (vals == null) {
// This should never happen, but it ensures we won't return a null in
// case the loop above has some floating point inequality problem on
// the final iteration.
vals = samplers[weight.length - 1].sample();
}
return vals;
}
}
}