GaussianCurveFitter.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.fitting;
import java.util.List;
import java.util.Collection;
import org.apache.commons.math4.legacy.analysis.function.Gaussian;
import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.core.jdkmath.JdkMath;
/**
* Fits points to a {@link
* org.apache.commons.math4.legacy.analysis.function.Gaussian.Parametric Gaussian}
* function.
* <br>
* The {@link #withStartPoint(double[]) initial guess values} must be passed
* in the following order:
* <ul>
* <li>Normalization</li>
* <li>Mean</li>
* <li>Sigma</li>
* </ul>
* The optimal values will be returned in the same order.
*
* <p>
* Usage example:
* <pre>
* WeightedObservedPoints obs = new WeightedObservedPoints();
* obs.add(4.0254623, 531026.0);
* obs.add(4.03128248, 984167.0);
* obs.add(4.03839603, 1887233.0);
* obs.add(4.04421621, 2687152.0);
* obs.add(4.05132976, 3461228.0);
* obs.add(4.05326982, 3580526.0);
* obs.add(4.05779662, 3439750.0);
* obs.add(4.0636168, 2877648.0);
* obs.add(4.06943698, 2175960.0);
* obs.add(4.07525716, 1447024.0);
* obs.add(4.08237071, 717104.0);
* obs.add(4.08366408, 620014.0);
* double[] parameters = GaussianCurveFitter.create().fit(obs.toList());
* </pre>
*
* @since 3.3
*/
public final class GaussianCurveFitter extends SimpleCurveFitter {
/** Parametric function to be fitted. */
private static final Gaussian.Parametric FUNCTION = new Gaussian.Parametric() {
/** {@inheritDoc} */
@Override
public double value(double x, double ... p) {
double v = Double.POSITIVE_INFINITY;
try {
v = super.value(x, p);
} catch (NotStrictlyPositiveException e) { // NOPMD
// Do nothing.
}
return v;
}
/** {@inheritDoc} */
@Override
public double[] gradient(double x, double ... p) {
double[] v = { Double.POSITIVE_INFINITY,
Double.POSITIVE_INFINITY,
Double.POSITIVE_INFINITY };
try {
v = super.gradient(x, p);
} catch (NotStrictlyPositiveException e) { // NOPMD
// Do nothing.
}
return v;
}
};
/**
* Constructor used by the factory methods.
*
* @param initialGuess Initial guess. If set to {@code null}, the initial guess
* will be estimated using the {@link ParameterGuesser}.
* @param maxIter Maximum number of iterations of the optimization algorithm.
*/
private GaussianCurveFitter(double[] initialGuess,
int maxIter) {
super(FUNCTION, initialGuess, new ParameterGuesser(), maxIter);
}
/**
* Creates a default curve fitter.
* The initial guess for the parameters will be {@link ParameterGuesser}
* computed automatically, and the maximum number of iterations of the
* optimization algorithm is set to {@link Integer#MAX_VALUE}.
*
* @return a curve fitter.
*
* @see #withStartPoint(double[])
* @see #withMaxIterations(int)
*/
public static GaussianCurveFitter create() {
return new GaussianCurveFitter(null, Integer.MAX_VALUE);
}
/**
* Guesses the parameters {@code norm}, {@code mean}, and {@code sigma}
* of a {@link org.apache.commons.math4.legacy.analysis.function.Gaussian.Parametric}
* based on the specified observed points.
*/
public static class ParameterGuesser extends SimpleCurveFitter.ParameterGuesser {
/**
* {@inheritDoc}
*
* @return the guessed parameters, in the following order:
* <ul>
* <li>Normalization factor</li>
* <li>Mean</li>
* <li>Standard deviation</li>
* </ul>
* @throws NullArgumentException if {@code observations} is
* {@code null}.
* @throws NumberIsTooSmallException if there are less than 3
* observations.
*/
@Override
public double[] guess(Collection<WeightedObservedPoint> observations) {
if (observations == null) {
throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY);
}
if (observations.size() < 3) {
throw new NumberIsTooSmallException(observations.size(), 3, true);
}
final List<WeightedObservedPoint> sorted = sortObservations(observations);
return basicGuess(sorted.toArray(new WeightedObservedPoint[0]));
}
/**
* Guesses the parameters based on the specified observed points.
*
* @param points Observed points, sorted.
* @return the guessed parameters (normalization factor, mean and
* sigma).
*/
private double[] basicGuess(WeightedObservedPoint[] points) {
final int maxYIdx = findMaxY(points);
final double n = points[maxYIdx].getY();
double fwhmApprox;
try {
final double halfY = 0.5 * n;
final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, halfY);
final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, halfY);
fwhmApprox = fwhmX2 - fwhmX1;
} catch (OutOfRangeException e) {
// TODO: Exceptions should not be used for flow control.
fwhmApprox = points[points.length - 1].getX() - points[0].getX();
}
final double s = fwhmApprox / (2 * JdkMath.sqrt(2 * JdkMath.log(2)));
return new double[] { n, points[maxYIdx].getX(), s };
}
}
}