ArrayFieldVector.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.linear;
import java.io.Serializable;
import java.util.Arrays;
import org.apache.commons.math4.legacy.core.Field;
import org.apache.commons.math4.legacy.core.FieldElement;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.MathArithmeticException;
import org.apache.commons.math4.legacy.exception.NotPositiveException;
import org.apache.commons.math4.legacy.exception.NullArgumentException;
import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
import org.apache.commons.math4.legacy.exception.ZeroException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.core.MathArrays;
/**
* This class implements the {@link FieldVector} interface with a {@link FieldElement} array.
* @param <T> the type of the field elements
* @since 2.0
*/
public class ArrayFieldVector<T extends FieldElement<T>> implements FieldVector<T>, Serializable {
/** Serializable version identifier. */
private static final long serialVersionUID = 7648186910365927050L;
/** Entries of the vector. */
private T[] data;
/** Field to which the elements belong. */
private final Field<T> field;
/**
* Build a 0-length vector.
* Zero-length vectors may be used to initialize construction of vectors
* by data gathering. We start with zero-length and use either the {@link
* #ArrayFieldVector(FieldVector, FieldVector)} constructor
* or one of the {@code append} methods ({@link #add(FieldVector)} or
* {@link #append(ArrayFieldVector)}) to gather data into this vector.
*
* @param field field to which the elements belong
*/
public ArrayFieldVector(final Field<T> field) {
this(field, 0);
}
/**
* Construct a vector of zeroes.
*
* @param field Field to which the elements belong.
* @param size Size of the vector.
*/
public ArrayFieldVector(Field<T> field, int size) {
this.field = field;
this.data = MathArrays.buildArray(field, size);
}
/**
* Construct a vector with preset values.
*
* @param size Size of the vector.
* @param preset All entries will be set with this value.
*/
public ArrayFieldVector(int size, T preset) {
this(preset.getField(), size);
Arrays.fill(data, preset);
}
/**
* Construct a vector from an array, copying the input array.
* This constructor needs a non-empty {@code d} array to retrieve
* the field from its first element. This implies it cannot build
* 0 length vectors. To build vectors from any size, one should
* use the {@link #ArrayFieldVector(Field, FieldElement[])} constructor.
*
* @param d Array.
* @throws NullArgumentException if {@code d} is {@code null}.
* @throws ZeroException if {@code d} is empty.
* @see #ArrayFieldVector(Field, FieldElement[])
*/
public ArrayFieldVector(T[] d)
throws NullArgumentException, ZeroException {
NullArgumentException.check(d);
try {
field = d[0].getField();
data = d.clone();
} catch (ArrayIndexOutOfBoundsException e) {
throw new ZeroException(LocalizedFormats.VECTOR_MUST_HAVE_AT_LEAST_ONE_ELEMENT);
}
}
/**
* Construct a vector from an array, copying the input array.
*
* @param field Field to which the elements belong.
* @param d Array.
* @throws NullArgumentException if {@code d} is {@code null}.
* @see #ArrayFieldVector(FieldElement[])
*/
public ArrayFieldVector(Field<T> field, T[] d)
throws NullArgumentException {
NullArgumentException.check(d);
this.field = field;
data = d.clone();
}
/**
* Create a new ArrayFieldVector using the input array as the underlying
* data array.
* If an array is built specially in order to be embedded in a
* ArrayFieldVector and not used directly, the {@code copyArray} may be
* set to {@code false}. This will prevent the copying and improve
* performance as no new array will be built and no data will be copied.
* This constructor needs a non-empty {@code d} array to retrieve
* the field from its first element. This implies it cannot build
* 0 length vectors. To build vectors from any size, one should
* use the {@link #ArrayFieldVector(Field, FieldElement[], boolean)}
* constructor.
*
* @param d Data for the new vector.
* @param copyArray If {@code true}, the input array will be copied,
* otherwise it will be referenced.
* @throws NullArgumentException if {@code d} is {@code null}.
* @throws ZeroException if {@code d} is empty.
* @see #ArrayFieldVector(FieldElement[])
* @see #ArrayFieldVector(Field, FieldElement[], boolean)
*/
public ArrayFieldVector(T[] d, boolean copyArray)
throws NullArgumentException, ZeroException {
NullArgumentException.check(d);
if (d.length == 0) {
throw new ZeroException(LocalizedFormats.VECTOR_MUST_HAVE_AT_LEAST_ONE_ELEMENT);
}
field = d[0].getField();
data = copyArray ? d.clone() : d;
}
/**
* Create a new ArrayFieldVector using the input array as the underlying
* data array.
* If an array is built specially in order to be embedded in a
* ArrayFieldVector and not used directly, the {@code copyArray} may be
* set to {@code false}. This will prevent the copying and improve
* performance as no new array will be built and no data will be copied.
*
* @param field Field to which the elements belong.
* @param d Data for the new vector.
* @param copyArray If {@code true}, the input array will be copied,
* otherwise it will be referenced.
* @throws NullArgumentException if {@code d} is {@code null}.
* @see #ArrayFieldVector(FieldElement[], boolean)
*/
public ArrayFieldVector(Field<T> field, T[] d, boolean copyArray)
throws NullArgumentException {
NullArgumentException.check(d);
this.field = field;
data = copyArray ? d.clone() : d;
}
/**
* Construct a vector from part of a array.
*
* @param d Array.
* @param pos Position of the first entry.
* @param size Number of entries to copy.
* @throws NullArgumentException if {@code d} is {@code null}.
* @throws NumberIsTooLargeException if the size of {@code d} is less
* than {@code pos + size}.
*/
public ArrayFieldVector(T[] d, int pos, int size)
throws NullArgumentException, NumberIsTooLargeException {
NullArgumentException.check(d);
if (d.length < pos + size) {
throw new NumberIsTooLargeException(pos + size, d.length, true);
}
field = d[0].getField();
data = MathArrays.buildArray(field, size);
System.arraycopy(d, pos, data, 0, size);
}
/**
* Construct a vector from part of a array.
*
* @param field Field to which the elements belong.
* @param d Array.
* @param pos Position of the first entry.
* @param size Number of entries to copy.
* @throws NullArgumentException if {@code d} is {@code null}.
* @throws NumberIsTooLargeException if the size of {@code d} is less
* than {@code pos + size}.
*/
public ArrayFieldVector(Field<T> field, T[] d, int pos, int size)
throws NullArgumentException, NumberIsTooLargeException {
NullArgumentException.check(d);
if (d.length < pos + size) {
throw new NumberIsTooLargeException(pos + size, d.length, true);
}
this.field = field;
data = MathArrays.buildArray(field, size);
System.arraycopy(d, pos, data, 0, size);
}
/**
* Construct a vector from another vector, using a deep copy.
*
* @param v Vector to copy.
* @throws NullArgumentException if {@code v} is {@code null}.
*/
public ArrayFieldVector(FieldVector<T> v)
throws NullArgumentException {
NullArgumentException.check(v);
field = v.getField();
data = MathArrays.buildArray(field, v.getDimension());
for (int i = 0; i < data.length; ++i) {
data[i] = v.getEntry(i);
}
}
/**
* Construct a vector from another vector, using a deep copy.
*
* @param v Vector to copy.
* @throws NullArgumentException if {@code v} is {@code null}.
*/
public ArrayFieldVector(ArrayFieldVector<T> v)
throws NullArgumentException {
NullArgumentException.check(v);
field = v.getField();
data = v.data.clone();
}
/**
* Construct a vector from another vector.
*
* @param v Vector to copy.
* @param deep If {@code true} perform a deep copy, otherwise perform
* a shallow copy
* @throws NullArgumentException if {@code v} is {@code null}.
*/
public ArrayFieldVector(ArrayFieldVector<T> v, boolean deep)
throws NullArgumentException {
NullArgumentException.check(v);
field = v.getField();
data = deep ? v.data.clone() : v.data;
}
/**
* Construct a vector by appending one vector to another vector.
*
* @param v1 First vector (will be put in front of the new vector).
* @param v2 Second vector (will be put at back of the new vector).
* @throws NullArgumentException if {@code v1} or {@code v2} is
* {@code null}.
* @since 3.2
*/
public ArrayFieldVector(FieldVector<T> v1, FieldVector<T> v2)
throws NullArgumentException {
NullArgumentException.check(v1);
NullArgumentException.check(v2);
field = v1.getField();
final T[] v1Data =
(v1 instanceof ArrayFieldVector) ? ((ArrayFieldVector<T>) v1).data : v1.toArray();
final T[] v2Data =
(v2 instanceof ArrayFieldVector) ? ((ArrayFieldVector<T>) v2).data : v2.toArray();
data = MathArrays.buildArray(field, v1Data.length + v2Data.length);
System.arraycopy(v1Data, 0, data, 0, v1Data.length);
System.arraycopy(v2Data, 0, data, v1Data.length, v2Data.length);
}
/**
* Construct a vector by appending one vector to another vector.
*
* @param v1 First vector (will be put in front of the new vector).
* @param v2 Second vector (will be put at back of the new vector).
* @throws NullArgumentException if {@code v1} or {@code v2} is
* {@code null}.
* @since 3.2
*/
public ArrayFieldVector(FieldVector<T> v1, T[] v2)
throws NullArgumentException {
NullArgumentException.check(v1);
NullArgumentException.check(v2);
field = v1.getField();
final T[] v1Data =
(v1 instanceof ArrayFieldVector) ? ((ArrayFieldVector<T>) v1).data : v1.toArray();
data = MathArrays.buildArray(field, v1Data.length + v2.length);
System.arraycopy(v1Data, 0, data, 0, v1Data.length);
System.arraycopy(v2, 0, data, v1Data.length, v2.length);
}
/**
* Construct a vector by appending one vector to another vector.
*
* @param v1 First vector (will be put in front of the new vector).
* @param v2 Second vector (will be put at back of the new vector).
* @throws NullArgumentException if {@code v1} or {@code v2} is
* {@code null}.
* @since 3.2
*/
public ArrayFieldVector(T[] v1, FieldVector<T> v2)
throws NullArgumentException {
NullArgumentException.check(v1);
NullArgumentException.check(v2);
field = v2.getField();
final T[] v2Data =
(v2 instanceof ArrayFieldVector) ? ((ArrayFieldVector<T>) v2).data : v2.toArray();
data = MathArrays.buildArray(field, v1.length + v2Data.length);
System.arraycopy(v1, 0, data, 0, v1.length);
System.arraycopy(v2Data, 0, data, v1.length, v2Data.length);
}
/**
* Construct a vector by appending one vector to another vector.
* This constructor needs at least one non-empty array to retrieve
* the field from its first element. This implies it cannot build
* 0 length vectors. To build vectors from any size, one should
* use the {@link #ArrayFieldVector(Field, FieldElement[], FieldElement[])}
* constructor.
*
* @param v1 First vector (will be put in front of the new vector).
* @param v2 Second vector (will be put at back of the new vector).
* @throws NullArgumentException if {@code v1} or {@code v2} is
* {@code null}.
* @throws ZeroException if both arrays are empty.
* @see #ArrayFieldVector(Field, FieldElement[], FieldElement[])
*/
public ArrayFieldVector(T[] v1, T[] v2)
throws NullArgumentException, ZeroException {
NullArgumentException.check(v1);
NullArgumentException.check(v2);
if (v1.length + v2.length == 0) {
throw new ZeroException(LocalizedFormats.VECTOR_MUST_HAVE_AT_LEAST_ONE_ELEMENT);
}
data = MathArrays.buildArray(v1[0].getField(), v1.length + v2.length);
System.arraycopy(v1, 0, data, 0, v1.length);
System.arraycopy(v2, 0, data, v1.length, v2.length);
field = data[0].getField();
}
/**
* Construct a vector by appending one vector to another vector.
*
* @param field Field to which the elements belong.
* @param v1 First vector (will be put in front of the new vector).
* @param v2 Second vector (will be put at back of the new vector).
* @throws NullArgumentException if {@code v1} or {@code v2} is
* {@code null}.
* @throws ZeroException if both arrays are empty.
* @see #ArrayFieldVector(FieldElement[], FieldElement[])
*/
public ArrayFieldVector(Field<T> field, T[] v1, T[] v2)
throws NullArgumentException, ZeroException {
NullArgumentException.check(v1);
NullArgumentException.check(v2);
if (v1.length + v2.length == 0) {
throw new ZeroException(LocalizedFormats.VECTOR_MUST_HAVE_AT_LEAST_ONE_ELEMENT);
}
data = MathArrays.buildArray(field, v1.length + v2.length);
System.arraycopy(v1, 0, data, 0, v1.length);
System.arraycopy(v2, 0, data, v1.length, v2.length);
this.field = field;
}
/** {@inheritDoc} */
@Override
public Field<T> getField() {
return field;
}
/** {@inheritDoc} */
@Override
public FieldVector<T> copy() {
return new ArrayFieldVector<>(this, true);
}
/** {@inheritDoc} */
@Override
public FieldVector<T> add(FieldVector<T> v)
throws DimensionMismatchException {
if (v instanceof ArrayFieldVector) {
return add((ArrayFieldVector<T>) v);
}
checkVectorDimensions(v);
T[] out = MathArrays.buildArray(field, data.length);
for (int i = 0; i < data.length; i++) {
out[i] = data[i].add(v.getEntry(i));
}
return new ArrayFieldVector<>(field, out, false);
}
/**
* Compute the sum of {@code this} and {@code v}.
* @param v vector to be added
* @return {@code this + v}
* @throws DimensionMismatchException if {@code v} is not the same size as
* {@code this}
*/
public ArrayFieldVector<T> add(ArrayFieldVector<T> v)
throws DimensionMismatchException {
checkVectorDimensions(v.data.length);
T[] out = MathArrays.buildArray(field, data.length);
for (int i = 0; i < data.length; i++) {
out[i] = data[i].add(v.data[i]);
}
return new ArrayFieldVector<>(field, out, false);
}
/** {@inheritDoc} */
@Override
public FieldVector<T> subtract(FieldVector<T> v)
throws DimensionMismatchException {
if (v instanceof ArrayFieldVector) {
return subtract((ArrayFieldVector<T>) v);
}
checkVectorDimensions(v);
T[] out = MathArrays.buildArray(field, data.length);
for (int i = 0; i < data.length; i++) {
out[i] = data[i].subtract(v.getEntry(i));
}
return new ArrayFieldVector<>(field, out, false);
}
/**
* Compute {@code this} minus {@code v}.
* @param v vector to be subtracted
* @return {@code this - v}
* @throws DimensionMismatchException if {@code v} is not the same size as
* {@code this}
*/
public ArrayFieldVector<T> subtract(ArrayFieldVector<T> v)
throws DimensionMismatchException {
checkVectorDimensions(v.data.length);
T[] out = MathArrays.buildArray(field, data.length);
for (int i = 0; i < data.length; i++) {
out[i] = data[i].subtract(v.data[i]);
}
return new ArrayFieldVector<>(field, out, false);
}
/** {@inheritDoc} */
@Override
public FieldVector<T> mapAdd(T d) throws NullArgumentException {
T[] out = MathArrays.buildArray(field, data.length);
for (int i = 0; i < data.length; i++) {
out[i] = data[i].add(d);
}
return new ArrayFieldVector<>(field, out, false);
}
/** {@inheritDoc} */
@Override
public FieldVector<T> mapAddToSelf(T d) throws NullArgumentException {
for (int i = 0; i < data.length; i++) {
data[i] = data[i].add(d);
}
return this;
}
/** {@inheritDoc} */
@Override
public FieldVector<T> mapSubtract(T d) throws NullArgumentException {
T[] out = MathArrays.buildArray(field, data.length);
for (int i = 0; i < data.length; i++) {
out[i] = data[i].subtract(d);
}
return new ArrayFieldVector<>(field, out, false);
}
/** {@inheritDoc} */
@Override
public FieldVector<T> mapSubtractToSelf(T d) throws NullArgumentException {
for (int i = 0; i < data.length; i++) {
data[i] = data[i].subtract(d);
}
return this;
}
/** {@inheritDoc} */
@Override
public FieldVector<T> mapMultiply(T d) throws NullArgumentException {
T[] out = MathArrays.buildArray(field, data.length);
for (int i = 0; i < data.length; i++) {
out[i] = data[i].multiply(d);
}
return new ArrayFieldVector<>(field, out, false);
}
/** {@inheritDoc} */
@Override
public FieldVector<T> mapMultiplyToSelf(T d) throws NullArgumentException {
for (int i = 0; i < data.length; i++) {
data[i] = data[i].multiply(d);
}
return this;
}
/** {@inheritDoc} */
@Override
public FieldVector<T> mapDivide(T d)
throws NullArgumentException, MathArithmeticException {
NullArgumentException.check(d);
T[] out = MathArrays.buildArray(field, data.length);
for (int i = 0; i < data.length; i++) {
out[i] = data[i].divide(d);
}
return new ArrayFieldVector<>(field, out, false);
}
/** {@inheritDoc} */
@Override
public FieldVector<T> mapDivideToSelf(T d)
throws NullArgumentException, MathArithmeticException {
NullArgumentException.check(d);
for (int i = 0; i < data.length; i++) {
data[i] = data[i].divide(d);
}
return this;
}
/** {@inheritDoc} */
@Override
public FieldVector<T> mapInv() throws MathArithmeticException {
T[] out = MathArrays.buildArray(field, data.length);
final T one = field.getOne();
for (int i = 0; i < data.length; i++) {
try {
out[i] = one.divide(data[i]);
} catch (final MathArithmeticException e) {
throw new MathArithmeticException(LocalizedFormats.INDEX, i);
}
}
return new ArrayFieldVector<>(field, out, false);
}
/** {@inheritDoc} */
@Override
public FieldVector<T> mapInvToSelf() throws MathArithmeticException {
final T one = field.getOne();
for (int i = 0; i < data.length; i++) {
try {
data[i] = one.divide(data[i]);
} catch (final MathArithmeticException e) {
throw new MathArithmeticException(LocalizedFormats.INDEX, i);
}
}
return this;
}
/** {@inheritDoc} */
@Override
public FieldVector<T> ebeMultiply(FieldVector<T> v)
throws DimensionMismatchException {
if (v instanceof ArrayFieldVector) {
return ebeMultiply((ArrayFieldVector<T>) v);
}
checkVectorDimensions(v);
T[] out = MathArrays.buildArray(field, data.length);
for (int i = 0; i < data.length; i++) {
out[i] = data[i].multiply(v.getEntry(i));
}
return new ArrayFieldVector<>(field, out, false);
}
/**
* Element-by-element multiplication.
* @param v vector by which instance elements must be multiplied
* @return a vector containing {@code this[i] * v[i]} for all {@code i}
* @throws DimensionMismatchException if {@code v} is not the same size as
* {@code this}
*/
public ArrayFieldVector<T> ebeMultiply(ArrayFieldVector<T> v)
throws DimensionMismatchException {
checkVectorDimensions(v.data.length);
T[] out = MathArrays.buildArray(field, data.length);
for (int i = 0; i < data.length; i++) {
out[i] = data[i].multiply(v.data[i]);
}
return new ArrayFieldVector<>(field, out, false);
}
/** {@inheritDoc} */
@Override
public FieldVector<T> ebeDivide(FieldVector<T> v)
throws DimensionMismatchException, MathArithmeticException {
if (v instanceof ArrayFieldVector) {
return ebeDivide((ArrayFieldVector<T>) v);
}
checkVectorDimensions(v);
T[] out = MathArrays.buildArray(field, data.length);
for (int i = 0; i < data.length; i++) {
try {
out[i] = data[i].divide(v.getEntry(i));
} catch (final MathArithmeticException e) {
throw new MathArithmeticException(LocalizedFormats.INDEX, i);
}
}
return new ArrayFieldVector<>(field, out, false);
}
/**
* Element-by-element division.
* @param v vector by which instance elements must be divided
* @return a vector containing {@code this[i] / v[i]} for all {@code i}
* @throws DimensionMismatchException if {@code v} is not the same size as
* {@code this}
* @throws MathArithmeticException if one entry of {@code v} is zero.
*/
public ArrayFieldVector<T> ebeDivide(ArrayFieldVector<T> v)
throws DimensionMismatchException, MathArithmeticException {
checkVectorDimensions(v.data.length);
T[] out = MathArrays.buildArray(field, data.length);
for (int i = 0; i < data.length; i++) {
try {
out[i] = data[i].divide(v.data[i]);
} catch (final MathArithmeticException e) {
throw new MathArithmeticException(LocalizedFormats.INDEX, i);
}
}
return new ArrayFieldVector<>(field, out, false);
}
/**
* Returns a reference to the underlying data array.
* <p>Does not make a fresh copy of the underlying data.</p>
* @return array of entries
*/
public T[] getDataRef() {
return data;
}
/** {@inheritDoc} */
@Override
public T dotProduct(FieldVector<T> v)
throws DimensionMismatchException {
if (v instanceof ArrayFieldVector) {
return dotProduct((ArrayFieldVector<T>) v);
}
checkVectorDimensions(v);
T dot = field.getZero();
for (int i = 0; i < data.length; i++) {
dot = dot.add(data[i].multiply(v.getEntry(i)));
}
return dot;
}
/**
* Compute the dot product.
* @param v vector with which dot product should be computed
* @return the scalar dot product of {@code this} and {@code v}
* @throws DimensionMismatchException if {@code v} is not the same size as
* {@code this}
*/
public T dotProduct(ArrayFieldVector<T> v)
throws DimensionMismatchException {
checkVectorDimensions(v.data.length);
T dot = field.getZero();
for (int i = 0; i < data.length; i++) {
dot = dot.add(data[i].multiply(v.data[i]));
}
return dot;
}
/** {@inheritDoc} */
@Override
public FieldVector<T> projection(FieldVector<T> v)
throws DimensionMismatchException, MathArithmeticException {
return v.mapMultiply(dotProduct(v).divide(v.dotProduct(v)));
}
/** Find the orthogonal projection of this vector onto another vector.
* @param v vector onto which {@code this} must be projected
* @return projection of {@code this} onto {@code v}
* @throws DimensionMismatchException if {@code v} is not the same size as
* {@code this}
* @throws MathArithmeticException if {@code v} is the null vector.
*/
public ArrayFieldVector<T> projection(ArrayFieldVector<T> v)
throws DimensionMismatchException, MathArithmeticException {
return (ArrayFieldVector<T>) v.mapMultiply(dotProduct(v).divide(v.dotProduct(v)));
}
/** {@inheritDoc} */
@Override
public FieldMatrix<T> outerProduct(FieldVector<T> v) {
if (v instanceof ArrayFieldVector) {
return outerProduct((ArrayFieldVector<T>) v);
}
final int m = data.length;
final int n = v.getDimension();
final FieldMatrix<T> out = new Array2DRowFieldMatrix<>(field, m, n);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
out.setEntry(i, j, data[i].multiply(v.getEntry(j)));
}
}
return out;
}
/**
* Compute the outer product.
* @param v vector with which outer product should be computed
* @return the matrix outer product between instance and v
*/
public FieldMatrix<T> outerProduct(ArrayFieldVector<T> v) {
final int m = data.length;
final int n = v.data.length;
final FieldMatrix<T> out = new Array2DRowFieldMatrix<>(field, m, n);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
out.setEntry(i, j, data[i].multiply(v.data[j]));
}
}
return out;
}
/** {@inheritDoc} */
@Override
public T getEntry(int index) {
return data[index];
}
/** {@inheritDoc} */
@Override
public int getDimension() {
return data.length;
}
/** {@inheritDoc} */
@Override
public FieldVector<T> append(FieldVector<T> v) {
if (v instanceof ArrayFieldVector) {
return append((ArrayFieldVector<T>) v);
}
return new ArrayFieldVector<>(this,new ArrayFieldVector<>(v));
}
/**
* Construct a vector by appending a vector to this vector.
* @param v vector to append to this one.
* @return a new vector
*/
public ArrayFieldVector<T> append(ArrayFieldVector<T> v) {
return new ArrayFieldVector<>(this, v);
}
/** {@inheritDoc} */
@Override
public FieldVector<T> append(T in) {
final T[] out = MathArrays.buildArray(field, data.length + 1);
System.arraycopy(data, 0, out, 0, data.length);
out[data.length] = in;
return new ArrayFieldVector<>(field, out, false);
}
/** {@inheritDoc} */
@Override
public FieldVector<T> getSubVector(int index, int n)
throws OutOfRangeException, NotPositiveException {
if (n < 0) {
throw new NotPositiveException(LocalizedFormats.NUMBER_OF_ELEMENTS_SHOULD_BE_POSITIVE, n);
}
ArrayFieldVector<T> out = new ArrayFieldVector<>(field, n);
try {
System.arraycopy(data, index, out.data, 0, n);
} catch (IndexOutOfBoundsException e) {
checkIndex(index);
checkIndex(index + n - 1);
}
return out;
}
/** {@inheritDoc} */
@Override
public void setEntry(int index, T value) {
try {
data[index] = value;
} catch (IndexOutOfBoundsException e) {
checkIndex(index);
}
}
/** {@inheritDoc} */
@Override
public void setSubVector(int index, FieldVector<T> v) throws OutOfRangeException {
try {
if (v instanceof ArrayFieldVector) {
set(index, (ArrayFieldVector<T>) v);
} else {
for (int i = index; i < index + v.getDimension(); ++i) {
data[i] = v.getEntry(i-index);
}
}
} catch (IndexOutOfBoundsException e) {
checkIndex(index);
checkIndex(index + v.getDimension() - 1);
}
}
/**
* Set a set of consecutive elements.
*
* @param index index of first element to be set.
* @param v vector containing the values to set.
* @throws OutOfRangeException if the index is invalid.
*/
public void set(int index, ArrayFieldVector<T> v) throws OutOfRangeException {
try {
System.arraycopy(v.data, 0, data, index, v.data.length);
} catch (IndexOutOfBoundsException e) {
checkIndex(index);
checkIndex(index + v.data.length - 1);
}
}
/** {@inheritDoc} */
@Override
public void set(T value) {
Arrays.fill(data, value);
}
/** {@inheritDoc} */
@Override
public T[] toArray(){
return data.clone();
}
/**
* Check if instance and specified vectors have the same dimension.
* @param v vector to compare instance with
* @exception DimensionMismatchException if the vectors do not
* have the same dimensions
*/
protected void checkVectorDimensions(FieldVector<T> v)
throws DimensionMismatchException {
checkVectorDimensions(v.getDimension());
}
/**
* Check if instance dimension is equal to some expected value.
*
* @param n Expected dimension.
* @throws DimensionMismatchException if the dimension is not equal to the
* size of {@code this} vector.
*/
protected void checkVectorDimensions(int n)
throws DimensionMismatchException {
if (data.length != n) {
throw new DimensionMismatchException(data.length, n);
}
}
/**
* Visits (but does not alter) all entries of this vector in default order
* (increasing index).
*
* @param visitor the visitor to be used to process the entries of this
* vector
* @return the value returned by {@link FieldVectorPreservingVisitor#end()}
* at the end of the walk
* @since 3.3
*/
public T walkInDefaultOrder(final FieldVectorPreservingVisitor<T> visitor) {
final int dim = getDimension();
visitor.start(dim, 0, dim - 1);
for (int i = 0; i < dim; i++) {
visitor.visit(i, getEntry(i));
}
return visitor.end();
}
/**
* Visits (but does not alter) some entries of this vector in default order
* (increasing index).
*
* @param visitor visitor to be used to process the entries of this vector
* @param start the index of the first entry to be visited
* @param end the index of the last entry to be visited (inclusive)
* @return the value returned by {@link FieldVectorPreservingVisitor#end()}
* at the end of the walk
* @throws NumberIsTooSmallException if {@code end < start}.
* @throws OutOfRangeException if the indices are not valid.
* @since 3.3
*/
public T walkInDefaultOrder(final FieldVectorPreservingVisitor<T> visitor,
final int start, final int end)
throws NumberIsTooSmallException, OutOfRangeException {
checkIndices(start, end);
visitor.start(getDimension(), start, end);
for (int i = start; i <= end; i++) {
visitor.visit(i, getEntry(i));
}
return visitor.end();
}
/**
* Visits (but does not alter) all entries of this vector in optimized
* order. The order in which the entries are visited is selected so as to
* lead to the most efficient implementation; it might depend on the
* concrete implementation of this abstract class.
*
* @param visitor the visitor to be used to process the entries of this
* vector
* @return the value returned by {@link FieldVectorPreservingVisitor#end()}
* at the end of the walk
* @since 3.3
*/
public T walkInOptimizedOrder(final FieldVectorPreservingVisitor<T> visitor) {
return walkInDefaultOrder(visitor);
}
/**
* Visits (but does not alter) some entries of this vector in optimized
* order. The order in which the entries are visited is selected so as to
* lead to the most efficient implementation; it might depend on the
* concrete implementation of this abstract class.
*
* @param visitor visitor to be used to process the entries of this vector
* @param start the index of the first entry to be visited
* @param end the index of the last entry to be visited (inclusive)
* @return the value returned by {@link FieldVectorPreservingVisitor#end()}
* at the end of the walk
* @throws NumberIsTooSmallException if {@code end < start}.
* @throws OutOfRangeException if the indices are not valid.
* @since 3.3
*/
public T walkInOptimizedOrder(final FieldVectorPreservingVisitor<T> visitor,
final int start, final int end)
throws NumberIsTooSmallException, OutOfRangeException {
return walkInDefaultOrder(visitor, start, end);
}
/**
* Visits (and possibly alters) all entries of this vector in default order
* (increasing index).
*
* @param visitor the visitor to be used to process and modify the entries
* of this vector
* @return the value returned by {@link FieldVectorChangingVisitor#end()}
* at the end of the walk
* @since 3.3
*/
public T walkInDefaultOrder(final FieldVectorChangingVisitor<T> visitor) {
final int dim = getDimension();
visitor.start(dim, 0, dim - 1);
for (int i = 0; i < dim; i++) {
setEntry(i, visitor.visit(i, getEntry(i)));
}
return visitor.end();
}
/**
* Visits (and possibly alters) some entries of this vector in default order
* (increasing index).
*
* @param visitor visitor to be used to process the entries of this vector
* @param start the index of the first entry to be visited
* @param end the index of the last entry to be visited (inclusive)
* @return the value returned by {@link FieldVectorChangingVisitor#end()}
* at the end of the walk
* @throws NumberIsTooSmallException if {@code end < start}.
* @throws OutOfRangeException if the indices are not valid.
* @since 3.3
*/
public T walkInDefaultOrder(final FieldVectorChangingVisitor<T> visitor,
final int start, final int end)
throws NumberIsTooSmallException, OutOfRangeException {
checkIndices(start, end);
visitor.start(getDimension(), start, end);
for (int i = start; i <= end; i++) {
setEntry(i, visitor.visit(i, getEntry(i)));
}
return visitor.end();
}
/**
* Visits (and possibly alters) all entries of this vector in optimized
* order. The order in which the entries are visited is selected so as to
* lead to the most efficient implementation; it might depend on the
* concrete implementation of this abstract class.
*
* @param visitor the visitor to be used to process the entries of this
* vector
* @return the value returned by {@link FieldVectorChangingVisitor#end()}
* at the end of the walk
* @since 3.3
*/
public T walkInOptimizedOrder(final FieldVectorChangingVisitor<T> visitor) {
return walkInDefaultOrder(visitor);
}
/**
* Visits (and possibly change) some entries of this vector in optimized
* order. The order in which the entries are visited is selected so as to
* lead to the most efficient implementation; it might depend on the
* concrete implementation of this abstract class.
*
* @param visitor visitor to be used to process the entries of this vector
* @param start the index of the first entry to be visited
* @param end the index of the last entry to be visited (inclusive)
* @return the value returned by {@link FieldVectorChangingVisitor#end()}
* at the end of the walk
* @throws NumberIsTooSmallException if {@code end < start}.
* @throws OutOfRangeException if the indices are not valid.
* @since 3.3
*/
public T walkInOptimizedOrder(final FieldVectorChangingVisitor<T> visitor,
final int start, final int end)
throws NumberIsTooSmallException, OutOfRangeException {
return walkInDefaultOrder(visitor, start, end);
}
/**
* Test for the equality of two vectors.
*
* @param other Object to test for equality.
* @return {@code true} if two vector objects are equal, {@code false}
* otherwise.
*/
@Override
public boolean equals(Object other) {
if (this == other) {
return true;
}
if (other == null) {
return false;
}
if (!(other instanceof FieldVector)) {
return false;
}
FieldVector rhs = (FieldVector) other;
if (data.length != rhs.getDimension()) {
return false;
}
for (int i = 0; i < data.length; ++i) {
if (!data[i].equals(rhs.getEntry(i))) {
return false;
}
}
return true;
}
/**
* Get a hashCode for the real vector.
* <p>All NaN values have the same hash code.</p>
* @return a hash code value for this object
*/
@Override
public int hashCode() {
int h = 3542;
for (final T a : data) {
h ^= a.hashCode();
}
return h;
}
/**
* Check if an index is valid.
*
* @param index Index to check.
* @exception OutOfRangeException if the index is not valid.
*/
private void checkIndex(final int index) throws OutOfRangeException {
if (index < 0 || index >= getDimension()) {
throw new OutOfRangeException(LocalizedFormats.INDEX,
index, 0, getDimension() - 1);
}
}
/**
* Checks that the indices of a subvector are valid.
*
* @param start the index of the first entry of the subvector
* @param end the index of the last entry of the subvector (inclusive)
* @throws OutOfRangeException if {@code start} of {@code end} are not valid
* @throws NumberIsTooSmallException if {@code end < start}
* @since 3.3
*/
private void checkIndices(final int start, final int end)
throws NumberIsTooSmallException, OutOfRangeException {
final int dim = getDimension();
if (start < 0 || start >= dim) {
throw new OutOfRangeException(LocalizedFormats.INDEX, start, 0,
dim - 1);
}
if (end < 0 || end >= dim) {
throw new OutOfRangeException(LocalizedFormats.INDEX, end, 0,
dim - 1);
}
if (end < start) {
throw new NumberIsTooSmallException(LocalizedFormats.INITIAL_ROW_AFTER_FINAL_ROW,
end, start, false);
}
}
}