SumOfClusterVariances.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.ml.clustering.evaluation;
import java.util.List;
import org.apache.commons.math4.legacy.ml.clustering.Cluster;
import org.apache.commons.math4.legacy.ml.clustering.Clusterable;
import org.apache.commons.math4.legacy.ml.clustering.ClusterEvaluator;
import org.apache.commons.math4.legacy.ml.distance.DistanceMeasure;
import org.apache.commons.math4.legacy.stat.descriptive.moment.Variance;
/**
* Computes the sum of intra-cluster distance variances according to the formula:
* <pre>
* \( score = \sum\limits_{i=1}^n \sigma_i^2 \)
* </pre>
* where n is the number of clusters and \( \sigma_i^2 \) is the variance of
* intra-cluster distances of cluster \( c_i \).
*
* @since 3.3
*/
public class SumOfClusterVariances implements ClusterEvaluator {
/** The distance measure to use when evaluating the cluster. */
private final DistanceMeasure measure;
/**
* @param measure Distance measure.
*/
public SumOfClusterVariances(final DistanceMeasure measure) {
this.measure = measure;
}
/** {@inheritDoc} */
@Override
public double score(List<? extends Cluster<? extends Clusterable>> clusters) {
double varianceSum = 0.0;
for (final Cluster<? extends Clusterable> cluster : clusters) {
if (!cluster.getPoints().isEmpty()) {
final Clusterable center = cluster.centroid();
// compute the distance variance of the current cluster
final Variance stat = new Variance();
for (final Clusterable point : cluster.getPoints()) {
stat.increment(distance(point, center));
}
varianceSum += stat.getResult();
}
}
return varianceSum;
}
/** {@inheritDoc} */
@Override
public boolean isBetterScore(double a,
double b) {
return a < b;
}
/**
* Calculates the distance between two {@link Clusterable} instances
* with the configured {@link DistanceMeasure}.
*
* @param p1 the first clusterable
* @param p2 the second clusterable
* @return the distance between the two clusterables
*/
private double distance(final Clusterable p1, final Clusterable p2) {
return measure.compute(p1.getPoint(), p2.getPoint());
}
}