MultiKMeansPlusPlusClusterer.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.ml.clustering;
import java.util.Collection;
import java.util.List;
import org.apache.commons.math4.legacy.ml.clustering.evaluation.SumOfClusterVariances;
/**
* A wrapper around a k-means++ clustering algorithm which performs multiple trials
* and returns the best solution.
* @param <T> type of the points to cluster
* @since 3.2
*/
public class MultiKMeansPlusPlusClusterer<T extends Clusterable> extends Clusterer<T> {
/** The underlying k-means clusterer. */
private final KMeansPlusPlusClusterer<T> clusterer;
/** The number of trial runs. */
private final int numTrials;
/** The cluster evaluator to use. */
private final ClusterRanking evaluator;
/** Build a clusterer.
* @param clusterer the k-means clusterer to use
* @param numTrials number of trial runs
*/
public MultiKMeansPlusPlusClusterer(final KMeansPlusPlusClusterer<T> clusterer,
final int numTrials) {
this(clusterer,
numTrials,
ClusterEvaluator.ranking(new SumOfClusterVariances(clusterer.getDistanceMeasure())));
}
/** Build a clusterer.
* @param clusterer the k-means clusterer to use
* @param numTrials number of trial runs
* @param evaluator the cluster evaluator to use
* @since 3.3
*/
public MultiKMeansPlusPlusClusterer(final KMeansPlusPlusClusterer<T> clusterer,
final int numTrials,
final ClusterRanking evaluator) {
super(clusterer.getDistanceMeasure());
this.clusterer = clusterer;
this.numTrials = numTrials;
this.evaluator = evaluator;
}
/**
* Runs the K-means++ clustering algorithm.
*
* @param points the points to cluster
* @return a list of clusters containing the points
* @throws org.apache.commons.math4.legacy.exception.MathIllegalArgumentException if
* the data points are null or the number of clusters is larger than the
* number of data points
* @throws org.apache.commons.math4.legacy.exception.ConvergenceException if
* an empty cluster is encountered and the underlying {@link KMeansPlusPlusClusterer}
* has its {@link KMeansPlusPlusClusterer.EmptyClusterStrategy} is set to {@code ERROR}.
*/
@Override
public List<CentroidCluster<T>> cluster(final Collection<T> points) {
// at first, we have not found any clusters list yet
List<CentroidCluster<T>> best = null;
double bestRank = Double.NEGATIVE_INFINITY;
// do several clustering trials
for (int i = 0; i < numTrials; ++i) {
// compute a clusters list
List<CentroidCluster<T>> clusters = clusterer.cluster(points);
// compute the rank of the current list
final double rank = evaluator.compute(clusters);
if (rank > bestRank) {
// this one is the best we have found so far, remember it
best = clusters;
bestRank = rank;
}
}
// return the best clusters list found
return best;
}
}