DormandPrince54StepInterpolator.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.ode.nonstiff;
import org.apache.commons.math4.legacy.ode.AbstractIntegrator;
import org.apache.commons.math4.legacy.ode.EquationsMapper;
import org.apache.commons.math4.legacy.ode.sampling.StepInterpolator;
/**
* This class represents an interpolator over the last step during an
* ODE integration for the 5(4) Dormand-Prince integrator.
*
* @see DormandPrince54Integrator
*
* @since 1.2
*/
class DormandPrince54StepInterpolator
extends RungeKuttaStepInterpolator {
/** Last row of the Butcher-array internal weights, element 0. */
private static final double A70 = 35.0 / 384.0;
// element 1 is zero, so it is neither stored nor used
/** Last row of the Butcher-array internal weights, element 2. */
private static final double A72 = 500.0 / 1113.0;
/** Last row of the Butcher-array internal weights, element 3. */
private static final double A73 = 125.0 / 192.0;
/** Last row of the Butcher-array internal weights, element 4. */
private static final double A74 = -2187.0 / 6784.0;
/** Last row of the Butcher-array internal weights, element 5. */
private static final double A75 = 11.0 / 84.0;
/** Shampine (1986) Dense output, element 0. */
private static final double D0 = -12715105075.0 / 11282082432.0;
// element 1 is zero, so it is neither stored nor used
/** Shampine (1986) Dense output, element 2. */
private static final double D2 = 87487479700.0 / 32700410799.0;
/** Shampine (1986) Dense output, element 3. */
private static final double D3 = -10690763975.0 / 1880347072.0;
/** Shampine (1986) Dense output, element 4. */
private static final double D4 = 701980252875.0 / 199316789632.0;
/** Shampine (1986) Dense output, element 5. */
private static final double D5 = -1453857185.0 / 822651844.0;
/** Shampine (1986) Dense output, element 6. */
private static final double D6 = 69997945.0 / 29380423.0;
/** Serializable version identifier. */
private static final long serialVersionUID = 20111120L;
/** First vector for interpolation. */
private double[] v1;
/** Second vector for interpolation. */
private double[] v2;
/** Third vector for interpolation. */
private double[] v3;
/** Fourth vector for interpolation. */
private double[] v4;
/** Initialization indicator for the interpolation vectors. */
private boolean vectorsInitialized;
/** Simple constructor.
* This constructor builds an instance that is not usable yet, the
* {@link #reinitialize} method should be called before using the
* instance in order to initialize the internal arrays. This
* constructor is used only in order to delay the initialization in
* some cases. The {@link EmbeddedRungeKuttaIntegrator} uses the
* prototyping design pattern to create the step interpolators by
* cloning an uninitialized model and latter initializing the copy.
*/
// CHECKSTYLE: stop RedundantModifier
// the public modifier here is needed for serialization
public DormandPrince54StepInterpolator() {
super();
v1 = null;
v2 = null;
v3 = null;
v4 = null;
vectorsInitialized = false;
}
// CHECKSTYLE: resume RedundantModifier
/** Copy constructor.
* @param interpolator interpolator to copy from. The copy is a deep
* copy: its arrays are separated from the original arrays of the
* instance
*/
DormandPrince54StepInterpolator(final DormandPrince54StepInterpolator interpolator) {
super(interpolator);
if (interpolator.v1 == null) {
v1 = null;
v2 = null;
v3 = null;
v4 = null;
vectorsInitialized = false;
} else {
v1 = interpolator.v1.clone();
v2 = interpolator.v2.clone();
v3 = interpolator.v3.clone();
v4 = interpolator.v4.clone();
vectorsInitialized = interpolator.vectorsInitialized;
}
}
/** {@inheritDoc} */
@Override
protected StepInterpolator doCopy() {
return new DormandPrince54StepInterpolator(this);
}
/** {@inheritDoc} */
@Override
public void reinitialize(final AbstractIntegrator integrator,
final double[] y, final double[][] yDotK, final boolean forward,
final EquationsMapper primaryMapper,
final EquationsMapper[] secondaryMappers) {
super.reinitialize(integrator, y, yDotK, forward, primaryMapper, secondaryMappers);
v1 = null;
v2 = null;
v3 = null;
v4 = null;
vectorsInitialized = false;
}
/** {@inheritDoc} */
@Override
public void storeTime(final double t) {
super.storeTime(t);
vectorsInitialized = false;
}
/** {@inheritDoc} */
@Override
protected void computeInterpolatedStateAndDerivatives(final double theta,
final double oneMinusThetaH) {
if (! vectorsInitialized) {
if (v1 == null) {
v1 = new double[interpolatedState.length];
v2 = new double[interpolatedState.length];
v3 = new double[interpolatedState.length];
v4 = new double[interpolatedState.length];
}
// no step finalization is needed for this interpolator
// we need to compute the interpolation vectors for this time step
for (int i = 0; i < interpolatedState.length; ++i) {
final double yDot0 = yDotK[0][i];
final double yDot2 = yDotK[2][i];
final double yDot3 = yDotK[3][i];
final double yDot4 = yDotK[4][i];
final double yDot5 = yDotK[5][i];
final double yDot6 = yDotK[6][i];
v1[i] = A70 * yDot0 + A72 * yDot2 + A73 * yDot3 + A74 * yDot4 + A75 * yDot5;
v2[i] = yDot0 - v1[i];
v3[i] = v1[i] - v2[i] - yDot6;
v4[i] = D0 * yDot0 + D2 * yDot2 + D3 * yDot3 + D4 * yDot4 + D5 * yDot5 + D6 * yDot6;
}
vectorsInitialized = true;
}
// interpolate
final double eta = 1 - theta;
final double twoTheta = 2 * theta;
final double dot2 = 1 - twoTheta;
final double dot3 = theta * (2 - 3 * theta);
final double dot4 = twoTheta * (1 + theta * (twoTheta - 3));
if (previousState != null && theta <= 0.5) {
for (int i = 0; i < interpolatedState.length; ++i) {
interpolatedState[i] =
previousState[i] + theta * h * (v1[i] + eta * (v2[i] + theta * (v3[i] + eta * v4[i])));
interpolatedDerivatives[i] = v1[i] + dot2 * v2[i] + dot3 * v3[i] + dot4 * v4[i];
}
} else {
for (int i = 0; i < interpolatedState.length; ++i) {
interpolatedState[i] =
currentState[i] - oneMinusThetaH * (v1[i] - theta * (v2[i] + theta * (v3[i] + eta * v4[i])));
interpolatedDerivatives[i] = v1[i] + dot2 * v2[i] + dot3 * v3[i] + dot4 * v4[i];
}
}
}
}