DormandPrince853FieldStepInterpolator | | 0% | | 0% | 8 | 8 | 182 | 182 | 4 | 4 | 1 | 1 |
GraggBulirschStoerIntegrator | | 0% | | 0% | 131 | 131 | 314 | 314 | 13 | 13 | 1 | 1 |
DormandPrince853FieldIntegrator | | 0% | | 0% | 12 | 12 | 230 | 230 | 8 | 8 | 1 | 1 |
DormandPrince853StepInterpolator | | 0% | | 0% | 34 | 34 | 120 | 120 | 10 | 10 | 1 | 1 |
DormandPrince54FieldStepInterpolator | | 0% | | 0% | 5 | 5 | 124 | 124 | 3 | 3 | 1 | 1 |
GraggBulirschStoerStepInterpolator | | 0% | | 0% | 39 | 39 | 136 | 136 | 10 | 10 | 1 | 1 |
DormandPrince853Integrator | | 0% | | 0% | 8 | 8 | 45 | 45 | 5 | 5 | 1 | 1 |
LutherFieldStepInterpolator | | 0% | | 0% | 5 | 5 | 48 | 48 | 3 | 3 | 1 | 1 |
EmbeddedRungeKuttaFieldIntegrator | | 0% | | 0% | 36 | 36 | 104 | 104 | 11 | 11 | 1 | 1 |
LutherStepInterpolator | | 0% | | 0% | 9 | 9 | 50 | 50 | 5 | 5 | 1 | 1 |
EmbeddedRungeKuttaIntegrator | | 0% | | 0% | 36 | 36 | 112 | 112 | 9 | 9 | 1 | 1 |
HighamHall54FieldIntegrator | | 0% | | 0% | 12 | 12 | 76 | 76 | 8 | 8 | 1 | 1 |
RungeKuttaFieldIntegrator | | 0% | | 0% | 24 | 24 | 74 | 74 | 4 | 4 | 1 | 1 |
DormandPrince54FieldIntegrator | | 0% | | 0% | 11 | 11 | 75 | 75 | 8 | 8 | 1 | 1 |
RungeKuttaIntegrator | | 0% | | 0% | 25 | 25 | 83 | 83 | 3 | 3 | 1 | 1 |
AdaptiveStepsizeFieldIntegrator | | 0% | | 0% | 32 | 32 | 87 | 87 | 11 | 11 | 1 | 1 |
AdamsNordsieckFieldTransformer | | 0% | | 0% | 23 | 23 | 75 | 75 | 7 | 7 | 1 | 1 |
AdamsNordsieckTransformer | | 0% | | 0% | 28 | 28 | 79 | 79 | 8 | 8 | 1 | 1 |
AdamsBashforthFieldIntegrator | | 0% | | 0% | 22 | 22 | 80 | 80 | 4 | 4 | 1 | 1 |
HighamHall54FieldStepInterpolator | | 0% | | 0% | 5 | 5 | 30 | 30 | 3 | 3 | 1 | 1 |
AdamsBashforthIntegrator | | 0% | | 0% | 23 | 23 | 89 | 89 | 4 | 4 | 1 | 1 |
DormandPrince54StepInterpolator | | 0% | | 0% | 14 | 14 | 62 | 62 | 6 | 6 | 1 | 1 |
HighamHall54StepInterpolator | | 0% | | 0% | 8 | 8 | 41 | 41 | 4 | 4 | 1 | 1 |
LutherFieldIntegrator | | 0% | | 0% | 6 | 6 | 47 | 47 | 5 | 5 | 1 | 1 |
AdamsMoultonFieldIntegrator | | 0% | | 0% | 18 | 18 | 71 | 71 | 3 | 3 | 1 | 1 |
AdaptiveStepsizeIntegrator | | 0% | | 0% | 35 | 35 | 86 | 86 | 12 | 12 | 1 | 1 |
AdamsMoultonIntegrator | | 0% | | 0% | 19 | 19 | 80 | 80 | 3 | 3 | 1 | 1 |
HighamHall54Integrator | | 0% | | 0% | 8 | 8 | 21 | 21 | 5 | 5 | 1 | 1 |
DormandPrince54Integrator | | 0% | | 0% | 7 | 7 | 18 | 18 | 5 | 5 | 1 | 1 |
ThreeEighthesStepInterpolator | | 0% | | 0% | 8 | 8 | 38 | 38 | 4 | 4 | 1 | 1 |
GillFieldStepInterpolator | | 0% | | 0% | 5 | 5 | 33 | 33 | 3 | 3 | 1 | 1 |
GillStepInterpolator | | 0% | | 0% | 9 | 9 | 43 | 43 | 5 | 5 | 1 | 1 |
ThreeEighthesFieldStepInterpolator | | 0% | | 0% | 5 | 5 | 27 | 27 | 3 | 3 | 1 | 1 |
LutherIntegrator | | 0% | | n/a | 2 | 2 | 6 | 6 | 2 | 2 | 1 | 1 |
ClassicalRungeKuttaStepInterpolator | | 0% | | 0% | 8 | 8 | 35 | 35 | 4 | 4 | 1 | 1 |
ClassicalRungeKuttaFieldStepInterpolator | | 0% | | 0% | 5 | 5 | 26 | 26 | 3 | 3 | 1 | 1 |
RungeKuttaStepInterpolator | | 0% | | 0% | 21 | 21 | 51 | 51 | 6 | 6 | 1 | 1 |
AdamsFieldStepInterpolator | | 0% | | 0% | 8 | 8 | 32 | 32 | 5 | 5 | 1 | 1 |
GillFieldIntegrator | | 0% | | 0% | 6 | 6 | 28 | 28 | 5 | 5 | 1 | 1 |
AdamsMoultonFieldIntegrator.Corrector | | 0% | | 0% | 8 | 8 | 23 | 23 | 4 | 4 | 1 | 1 |
ThreeEighthesFieldIntegrator | | 0% | | 0% | 6 | 6 | 24 | 24 | 5 | 5 | 1 | 1 |
ClassicalRungeKuttaFieldIntegrator | | 0% | | 0% | 6 | 6 | 24 | 24 | 5 | 5 | 1 | 1 |
MidpointStepInterpolator | | 0% | | 0% | 8 | 8 | 24 | 24 | 4 | 4 | 1 | 1 |
AdamsMoultonIntegrator.Corrector | | 0% | | 0% | 8 | 8 | 23 | 23 | 4 | 4 | 1 | 1 |
MidpointFieldStepInterpolator | | 0% | | 0% | 5 | 5 | 16 | 16 | 3 | 3 | 1 | 1 |
GillIntegrator | | 0% | | n/a | 2 | 2 | 8 | 8 | 2 | 2 | 1 | 1 |
RungeKuttaFieldStepInterpolator | | 0% | | 0% | 9 | 9 | 14 | 14 | 6 | 6 | 1 | 1 |
EulerStepInterpolator | | 0% | | 0% | 8 | 8 | 13 | 13 | 4 | 4 | 1 | 1 |
ClassicalRungeKuttaIntegrator | | 0% | | n/a | 2 | 2 | 5 | 5 | 2 | 2 | 1 | 1 |
ThreeEighthesIntegrator | | 0% | | n/a | 2 | 2 | 5 | 5 | 2 | 2 | 1 | 1 |
EulerFieldStepInterpolator | | 0% | | 0% | 5 | 5 | 9 | 9 | 3 | 3 | 1 | 1 |
MidpointFieldIntegrator | | 0% | | n/a | 5 | 5 | 13 | 13 | 5 | 5 | 1 | 1 |
AdamsFieldIntegrator | | 0% | | n/a | 5 | 5 | 10 | 10 | 5 | 5 | 1 | 1 |
AdamsIntegrator | | 0% | | n/a | 5 | 5 | 10 | 10 | 5 | 5 | 1 | 1 |
EulerFieldIntegrator | | 0% | | n/a | 5 | 5 | 8 | 8 | 5 | 5 | 1 | 1 |
MidpointIntegrator | | 0% | | n/a | 2 | 2 | 5 | 5 | 2 | 2 | 1 | 1 |
EulerIntegrator | | 0% | | n/a | 2 | 2 | 5 | 5 | 2 | 2 | 1 | 1 |