AbstractFieldStepInterpolator.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.ode.sampling;
import org.apache.commons.math4.legacy.core.RealFieldElement;
import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
import org.apache.commons.math4.legacy.ode.FieldEquationsMapper;
import org.apache.commons.math4.legacy.ode.FieldODEStateAndDerivative;
/** This abstract class represents an interpolator over the last step
* during an ODE integration.
*
* <p>The various ODE integrators provide objects extending this class
* to the step handlers. The handlers can use these objects to
* retrieve the state vector at intermediate times between the
* previous and the current grid points (dense output).</p>
*
* @see org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator
* @see StepHandler
*
* @param <T> the type of the field elements
* @since 3.6
*/
public abstract class AbstractFieldStepInterpolator<T extends RealFieldElement<T>>
implements FieldStepInterpolator<T> {
/** Global previous state. */
private final FieldODEStateAndDerivative<T> globalPreviousState;
/** Global current state. */
private final FieldODEStateAndDerivative<T> globalCurrentState;
/** Soft previous state. */
private final FieldODEStateAndDerivative<T> softPreviousState;
/** Soft current state. */
private final FieldODEStateAndDerivative<T> softCurrentState;
/** integration direction. */
private final boolean forward;
/** Mapper for ODE equations primary and secondary components. */
private FieldEquationsMapper<T> mapper;
/** Simple constructor.
* @param isForward integration direction indicator
* @param globalPreviousState start of the global step
* @param globalCurrentState end of the global step
* @param softPreviousState start of the restricted step
* @param softCurrentState end of the restricted step
* @param equationsMapper mapper for ODE equations primary and secondary components
*/
protected AbstractFieldStepInterpolator(final boolean isForward,
final FieldODEStateAndDerivative<T> globalPreviousState,
final FieldODEStateAndDerivative<T> globalCurrentState,
final FieldODEStateAndDerivative<T> softPreviousState,
final FieldODEStateAndDerivative<T> softCurrentState,
final FieldEquationsMapper<T> equationsMapper) {
this.forward = isForward;
this.globalPreviousState = globalPreviousState;
this.globalCurrentState = globalCurrentState;
this.softPreviousState = softPreviousState;
this.softCurrentState = softCurrentState;
this.mapper = equationsMapper;
}
/** Create a new restricted version of the instance.
* <p>
* The instance is not changed at all.
* </p>
* @param previousState start of the restricted step
* @param currentState end of the restricted step
* @return restricted version of the instance
* @see #getPreviousState()
* @see #getCurrentState()
*/
public AbstractFieldStepInterpolator<T> restrictStep(final FieldODEStateAndDerivative<T> previousState,
final FieldODEStateAndDerivative<T> currentState) {
return create(forward, globalPreviousState, globalCurrentState, previousState, currentState, mapper);
}
/** Create a new instance.
* @param newForward integration direction indicator
* @param newGlobalPreviousState start of the global step
* @param newGlobalCurrentState end of the global step
* @param newSoftPreviousState start of the restricted step
* @param newSoftCurrentState end of the restricted step
* @param newMapper equations mapper for the all equations
* @return a new instance
*/
protected abstract AbstractFieldStepInterpolator<T> create(boolean newForward,
FieldODEStateAndDerivative<T> newGlobalPreviousState,
FieldODEStateAndDerivative<T> newGlobalCurrentState,
FieldODEStateAndDerivative<T> newSoftPreviousState,
FieldODEStateAndDerivative<T> newSoftCurrentState,
FieldEquationsMapper<T> newMapper);
/**
* Get the previous global grid point state.
* @return previous global grid point state
*/
public FieldODEStateAndDerivative<T> getGlobalPreviousState() {
return globalPreviousState;
}
/**
* Get the current global grid point state.
* @return current global grid point state
*/
public FieldODEStateAndDerivative<T> getGlobalCurrentState() {
return globalCurrentState;
}
/** {@inheritDoc} */
@Override
public FieldODEStateAndDerivative<T> getPreviousState() {
return softPreviousState;
}
/** {@inheritDoc} */
@Override
public FieldODEStateAndDerivative<T> getCurrentState() {
return softCurrentState;
}
/** {@inheritDoc} */
@Override
public FieldODEStateAndDerivative<T> getInterpolatedState(final T time) {
final T thetaH = time.subtract(globalPreviousState.getTime());
final T oneMinusThetaH = globalCurrentState.getTime().subtract(time);
final T theta = thetaH.divide(globalCurrentState.getTime().subtract(globalPreviousState.getTime()));
return computeInterpolatedStateAndDerivatives(mapper, time, theta, thetaH, oneMinusThetaH);
}
/** {@inheritDoc} */
@Override
public boolean isForward() {
return forward;
}
/** Compute the state and derivatives at the interpolated time.
* This is the main processing method that should be implemented by
* the derived classes to perform the interpolation.
* @param equationsMapper mapper for ODE equations primary and secondary components
* @param time interpolation time
* @param theta normalized interpolation abscissa within the step
* (theta is zero at the previous time step and one at the current time step)
* @param thetaH time gap between the previous time and the interpolated time
* @param oneMinusThetaH time gap between the interpolated time and
* the current time
* @return interpolated state and derivatives
* @exception MaxCountExceededException if the number of functions evaluations is exceeded
*/
protected abstract FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(FieldEquationsMapper<T> equationsMapper,
T time, T theta,
T thetaH, T oneMinusThetaH)
throws MaxCountExceededException;
}