BOBYQAOptimizer.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// CHECKSTYLE: stop all
package org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv;
import org.apache.commons.math4.legacy.analysis.MultivariateFunction;
import org.apache.commons.math4.legacy.exception.MathIllegalStateException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
import org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix;
import org.apache.commons.math4.legacy.linear.ArrayRealVector;
import org.apache.commons.math4.legacy.linear.RealVector;
import org.apache.commons.math4.legacy.optim.PointValuePair;
import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer;
import org.apache.commons.math4.core.jdkmath.JdkMath;
/**
* Powell's BOBYQA algorithm. This implementation is translated and
* adapted from the Fortran version available
* <a href="http://plato.asu.edu/ftp/other_software/bobyqa.zip">here</a>.
* See <a href="http://www.optimization-online.org/DB_HTML/2010/05/2616.html">
* this paper</a> for an introduction.
* <br>
* BOBYQA is particularly well suited for high dimensional problems
* where derivatives are not available. In most cases it outperforms the
* {@link PowellOptimizer} significantly. Stochastic algorithms like
* {@link CMAESOptimizer} succeed more often than BOBYQA, but are more
* expensive. BOBYQA could also be considered as a replacement of any
* derivative-based optimizer when the derivatives are approximated by
* finite differences.
*
* @since 3.0
*/
public class BOBYQAOptimizer
extends MultivariateOptimizer {
/** Minimum dimension of the problem: {@value}. */
public static final int MINIMUM_PROBLEM_DIMENSION = 2;
/** Default value for {@link #initialTrustRegionRadius}: {@value}. */
public static final double DEFAULT_INITIAL_RADIUS = 10.0;
/** Default value for {@link #stoppingTrustRegionRadius}: {@value}. */
public static final double DEFAULT_STOPPING_RADIUS = 1E-8;
/** Constant 0. */
private static final double ZERO = 0d;
/** Constant 1. */
private static final double ONE = 1d;
/** Constant 2. */
private static final double TWO = 2d;
/** Constant 10. */
private static final double TEN = 10d;
/** Constant 16. */
private static final double SIXTEEN = 16d;
/** Constant 250. */
private static final double TWO_HUNDRED_FIFTY = 250d;
/** Constant -1. */
private static final double MINUS_ONE = -ONE;
/** Constant 1/2. */
private static final double HALF = ONE / 2;
/** Constant 1/4. */
private static final double ONE_OVER_FOUR = ONE / 4;
/** Constant 1/8. */
private static final double ONE_OVER_EIGHT = ONE / 8;
/** Constant 1/10. */
private static final double ONE_OVER_TEN = ONE / 10;
/** Constant 1/1000. */
private static final double ONE_OVER_A_THOUSAND = ONE / 1000;
/**
* numberOfInterpolationPoints XXX.
*/
private final int numberOfInterpolationPoints;
/**
* initialTrustRegionRadius XXX.
*/
private double initialTrustRegionRadius;
/**
* stoppingTrustRegionRadius XXX.
*/
private final double stoppingTrustRegionRadius;
/** Goal type (minimize or maximize). */
private boolean isMinimize;
/**
* Current best values for the variables to be optimized.
* The vector will be changed in-place to contain the values of the least
* calculated objective function values.
*/
private ArrayRealVector currentBest;
/** Differences between the upper and lower bounds. */
private double[] boundDifference;
/**
* Index of the interpolation point at the trust region center.
*/
private int trustRegionCenterInterpolationPointIndex;
/**
* Last <em>n</em> columns of matrix H (where <em>n</em> is the dimension
* of the problem).
* XXX "bmat" in the original code.
*/
private Array2DRowRealMatrix bMatrix;
/**
* Factorization of the leading <em>npt</em> square submatrix of H, this
* factorization being Z Z<sup>T</sup>, which provides both the correct
* rank and positive semi-definiteness.
* XXX "zmat" in the original code.
*/
private Array2DRowRealMatrix zMatrix;
/**
* Coordinates of the interpolation points relative to {@link #originShift}.
* XXX "xpt" in the original code.
*/
private Array2DRowRealMatrix interpolationPoints;
/**
* Shift of origin that should reduce the contributions from rounding
* errors to values of the model and Lagrange functions.
* XXX "xbase" in the original code.
*/
private ArrayRealVector originShift;
/**
* Values of the objective function at the interpolation points.
* XXX "fval" in the original code.
*/
private ArrayRealVector fAtInterpolationPoints;
/**
* Displacement from {@link #originShift} of the trust region center.
* XXX "xopt" in the original code.
*/
private ArrayRealVector trustRegionCenterOffset;
/**
* Gradient of the quadratic model at {@link #originShift} +
* {@link #trustRegionCenterOffset}.
* XXX "gopt" in the original code.
*/
private ArrayRealVector gradientAtTrustRegionCenter;
/**
* Differences {@link #getLowerBound()} - {@link #originShift}.
* All the components of every {@link #trustRegionCenterOffset} are going
* to satisfy the bounds<br>
* {@link #getLowerBound() lowerBound}<sub>i</sub> ≤
* {@link #trustRegionCenterOffset}<sub>i</sub>,<br>
* with appropriate equalities when {@link #trustRegionCenterOffset} is
* on a constraint boundary.
* XXX "sl" in the original code.
*/
private ArrayRealVector lowerDifference;
/**
* Differences {@link #getUpperBound()} - {@link #originShift}
* All the components of every {@link #trustRegionCenterOffset} are going
* to satisfy the bounds<br>
* {@link #trustRegionCenterOffset}<sub>i</sub> ≤
* {@link #getUpperBound() upperBound}<sub>i</sub>,<br>
* with appropriate equalities when {@link #trustRegionCenterOffset} is
* on a constraint boundary.
* XXX "su" in the original code.
*/
private ArrayRealVector upperDifference;
/**
* Parameters of the implicit second derivatives of the quadratic model.
* XXX "pq" in the original code.
*/
private ArrayRealVector modelSecondDerivativesParameters;
/**
* Point chosen by function {@link #trsbox(double,ArrayRealVector,
* ArrayRealVector, ArrayRealVector,ArrayRealVector,ArrayRealVector) trsbox}
* or {@link #altmov(int,double) altmov}.
* Usually {@link #originShift} + {@link #newPoint} is the vector of
* variables for the next evaluation of the objective function.
* It also satisfies the constraints indicated in {@link #lowerDifference}
* and {@link #upperDifference}.
* XXX "xnew" in the original code.
*/
private ArrayRealVector newPoint;
/**
* Alternative to {@link #newPoint}, chosen by
* {@link #altmov(int,double) altmov}.
* It may replace {@link #newPoint} in order to increase the denominator
* in the {@link #update(double, double, int) updating procedure}.
* XXX "xalt" in the original code.
*/
private ArrayRealVector alternativeNewPoint;
/**
* Trial step from {@link #trustRegionCenterOffset} which is usually
* {@link #newPoint} - {@link #trustRegionCenterOffset}.
* XXX "d__" in the original code.
*/
private ArrayRealVector trialStepPoint;
/**
* Values of the Lagrange functions at a new point.
* XXX "vlag" in the original code.
*/
private ArrayRealVector lagrangeValuesAtNewPoint;
/**
* Explicit second derivatives of the quadratic model.
* XXX "hq" in the original code.
*/
private ArrayRealVector modelSecondDerivativesValues;
/**
* @param numberOfInterpolationPoints Number of interpolation conditions.
* For a problem of dimension {@code n}, its value must be in the interval
* {@code [n+2, (n+1)(n+2)/2]}.
* Choices that exceed {@code 2n+1} are not recommended.
*/
public BOBYQAOptimizer(int numberOfInterpolationPoints) {
this(numberOfInterpolationPoints,
DEFAULT_INITIAL_RADIUS,
DEFAULT_STOPPING_RADIUS);
}
/**
* @param numberOfInterpolationPoints Number of interpolation conditions.
* For a problem of dimension {@code n}, its value must be in the interval
* {@code [n+2, (n+1)(n+2)/2]}.
* Choices that exceed {@code 2n+1} are not recommended.
* @param initialTrustRegionRadius Initial trust region radius.
* @param stoppingTrustRegionRadius Stopping trust region radius.
*/
public BOBYQAOptimizer(int numberOfInterpolationPoints,
double initialTrustRegionRadius,
double stoppingTrustRegionRadius) {
super(null); // No custom convergence criterion.
this.numberOfInterpolationPoints = numberOfInterpolationPoints;
this.initialTrustRegionRadius = initialTrustRegionRadius;
this.stoppingTrustRegionRadius = stoppingTrustRegionRadius;
}
/** {@inheritDoc} */
@Override
protected PointValuePair doOptimize() {
final double[] lowerBound = getLowerBound();
final double[] upperBound = getUpperBound();
// Validity checks.
setup(lowerBound, upperBound);
isMinimize = (getGoalType() == GoalType.MINIMIZE);
currentBest = new ArrayRealVector(getStartPoint());
final double value = bobyqa(lowerBound, upperBound);
return new PointValuePair(currentBest.getDataRef(),
isMinimize ? value : -value);
}
/**
* This subroutine seeks the least value of a function of many variables,
* by applying a trust region method that forms quadratic models by
* interpolation. There is usually some freedom in the interpolation
* conditions, which is taken up by minimizing the Frobenius norm of
* the change to the second derivative of the model, beginning with the
* zero matrix. The values of the variables are constrained by upper and
* lower bounds. The arguments of the subroutine are as follows.
*
* N must be set to the number of variables and must be at least two.
* NPT is the number of interpolation conditions. Its value must be in
* the interval [N+2,(N+1)(N+2)/2]. Choices that exceed 2*N+1 are not
* recommended.
* Initial values of the variables must be set in X(1),X(2),...,X(N). They
* will be changed to the values that give the least calculated F.
* For I=1,2,...,N, XL(I) and XU(I) must provide the lower and upper
* bounds, respectively, on X(I). The construction of quadratic models
* requires XL(I) to be strictly less than XU(I) for each I. Further,
* the contribution to a model from changes to the I-th variable is
* damaged severely by rounding errors if XU(I)-XL(I) is too small.
* RHOBEG and RHOEND must be set to the initial and final values of a trust
* region radius, so both must be positive with RHOEND no greater than
* RHOBEG. Typically, RHOBEG should be about one tenth of the greatest
* expected change to a variable, while RHOEND should indicate the
* accuracy that is required in the final values of the variables. An
* error return occurs if any of the differences XU(I)-XL(I), I=1,...,N,
* is less than 2*RHOBEG.
* MAXFUN must be set to an upper bound on the number of calls of CALFUN.
* The array W will be used for working space. Its length must be at least
* (NPT+5)*(NPT+N)+3*N*(N+5)/2.
*
* @param lowerBound Lower bounds.
* @param upperBound Upper bounds.
* @return the value of the objective at the optimum.
*/
private double bobyqa(double[] lowerBound,
double[] upperBound) {
printMethod(); // XXX
final int n = currentBest.getDimension();
// Return if there is insufficient space between the bounds. Modify the
// initial X if necessary in order to avoid conflicts between the bounds
// and the construction of the first quadratic model. The lower and upper
// bounds on moves from the updated X are set now, in the ISL and ISU
// partitions of W, in order to provide useful and exact information about
// components of X that become within distance RHOBEG from their bounds.
for (int j = 0; j < n; j++) {
final double boundDiff = boundDifference[j];
lowerDifference.setEntry(j, lowerBound[j] - currentBest.getEntry(j));
upperDifference.setEntry(j, upperBound[j] - currentBest.getEntry(j));
if (lowerDifference.getEntry(j) >= -initialTrustRegionRadius) {
if (lowerDifference.getEntry(j) >= ZERO) {
currentBest.setEntry(j, lowerBound[j]);
lowerDifference.setEntry(j, ZERO);
upperDifference.setEntry(j, boundDiff);
} else {
currentBest.setEntry(j, lowerBound[j] + initialTrustRegionRadius);
lowerDifference.setEntry(j, -initialTrustRegionRadius);
// Computing MAX
final double deltaOne = upperBound[j] - currentBest.getEntry(j);
upperDifference.setEntry(j, JdkMath.max(deltaOne, initialTrustRegionRadius));
}
} else if (upperDifference.getEntry(j) <= initialTrustRegionRadius) {
if (upperDifference.getEntry(j) <= ZERO) {
currentBest.setEntry(j, upperBound[j]);
lowerDifference.setEntry(j, -boundDiff);
upperDifference.setEntry(j, ZERO);
} else {
currentBest.setEntry(j, upperBound[j] - initialTrustRegionRadius);
// Computing MIN
final double deltaOne = lowerBound[j] - currentBest.getEntry(j);
final double deltaTwo = -initialTrustRegionRadius;
lowerDifference.setEntry(j, JdkMath.min(deltaOne, deltaTwo));
upperDifference.setEntry(j, initialTrustRegionRadius);
}
}
}
// Make the call of BOBYQB.
return bobyqb(lowerBound, upperBound);
} // bobyqa
// ----------------------------------------------------------------------------------------
/**
* The arguments N, NPT, X, XL, XU, RHOBEG, RHOEND, IPRINT and MAXFUN
* are identical to the corresponding arguments in SUBROUTINE BOBYQA.
* XBASE holds a shift of origin that should reduce the contributions
* from rounding errors to values of the model and Lagrange functions.
* XPT is a two-dimensional array that holds the coordinates of the
* interpolation points relative to XBASE.
* FVAL holds the values of F at the interpolation points.
* XOPT is set to the displacement from XBASE of the trust region centre.
* GOPT holds the gradient of the quadratic model at XBASE+XOPT.
* HQ holds the explicit second derivatives of the quadratic model.
* PQ contains the parameters of the implicit second derivatives of the
* quadratic model.
* BMAT holds the last N columns of H.
* ZMAT holds the factorization of the leading NPT by NPT submatrix of H,
* this factorization being ZMAT times ZMAT^T, which provides both the
* correct rank and positive semi-definiteness.
* NDIM is the first dimension of BMAT and has the value NPT+N.
* SL and SU hold the differences XL-XBASE and XU-XBASE, respectively.
* All the components of every XOPT are going to satisfy the bounds
* SL(I) .LEQ. XOPT(I) .LEQ. SU(I), with appropriate equalities when
* XOPT is on a constraint boundary.
* XNEW is chosen by SUBROUTINE TRSBOX or ALTMOV. Usually XBASE+XNEW is the
* vector of variables for the next call of CALFUN. XNEW also satisfies
* the SL and SU constraints in the way that has just been mentioned.
* XALT is an alternative to XNEW, chosen by ALTMOV, that may replace XNEW
* in order to increase the denominator in the updating of UPDATE.
* D is reserved for a trial step from XOPT, which is usually XNEW-XOPT.
* VLAG contains the values of the Lagrange functions at a new point X.
* They are part of a product that requires VLAG to be of length NDIM.
* W is a one-dimensional array that is used for working space. Its length
* must be at least 3*NDIM = 3*(NPT+N).
*
* @param lowerBound Lower bounds.
* @param upperBound Upper bounds.
* @return the value of the objective at the optimum.
*/
private double bobyqb(double[] lowerBound,
double[] upperBound) {
printMethod(); // XXX
final int n = currentBest.getDimension();
final int npt = numberOfInterpolationPoints;
final int np = n + 1;
final int nptm = npt - np;
final int nh = n * np / 2;
final ArrayRealVector work1 = new ArrayRealVector(n);
final ArrayRealVector work2 = new ArrayRealVector(npt);
final ArrayRealVector work3 = new ArrayRealVector(npt);
double cauchy = Double.NaN;
double alpha = Double.NaN;
double dsq = Double.NaN;
double crvmin = Double.NaN;
// Set some constants.
// Parameter adjustments
// Function Body
// The call of PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ,
// BMAT and ZMAT for the first iteration, with the corresponding values of
// of NF and KOPT, which are the number of calls of CALFUN so far and the
// index of the interpolation point at the trust region centre. Then the
// initial XOPT is set too. The branch to label 720 occurs if MAXFUN is
// less than NPT. GOPT will be updated if KOPT is different from KBASE.
trustRegionCenterInterpolationPointIndex = 0;
prelim(lowerBound, upperBound);
double xoptsq = ZERO;
for (int i = 0; i < n; i++) {
trustRegionCenterOffset.setEntry(i, interpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex, i));
// Computing 2nd power
final double deltaOne = trustRegionCenterOffset.getEntry(i);
xoptsq += deltaOne * deltaOne;
}
double fsave = fAtInterpolationPoints.getEntry(0);
final int kbase = 0;
// Complete the settings that are required for the iterative procedure.
int ntrits = 0;
int itest = 0;
int knew = 0;
int nfsav = getEvaluations();
double rho = initialTrustRegionRadius;
double delta = rho;
double diffa = ZERO;
double diffb = ZERO;
double diffc = ZERO;
double f = ZERO;
double beta = ZERO;
double adelt = ZERO;
double denom = ZERO;
double ratio = ZERO;
double dnorm = ZERO;
double scaden = ZERO;
double biglsq = ZERO;
double distsq = ZERO;
// Update GOPT if necessary before the first iteration and after each
// call of RESCUE that makes a call of CALFUN.
int state = 20;
for(;;) {
switch (state) {
case 20: {
printState(20); // XXX
if (trustRegionCenterInterpolationPointIndex != kbase) {
int ih = 0;
for (int j = 0; j < n; j++) {
for (int i = 0; i <= j; i++) {
if (i < j) {
gradientAtTrustRegionCenter.setEntry(j, gradientAtTrustRegionCenter.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * trustRegionCenterOffset.getEntry(i));
}
gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * trustRegionCenterOffset.getEntry(j));
ih++;
}
}
if (getEvaluations() > npt) {
for (int k = 0; k < npt; k++) {
double temp = ZERO;
for (int j = 0; j < n; j++) {
temp += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
}
temp *= modelSecondDerivativesParameters.getEntry(k);
for (int i = 0; i < n; i++) {
gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
}
}
// throw new PathIsExploredException(); // XXX
}
}
// Generate the next point in the trust region that provides a small value
// of the quadratic model subject to the constraints on the variables.
// The int NTRITS is set to the number "trust region" iterations that
// have occurred since the last "alternative" iteration. If the length
// of XNEW-XOPT is less than HALF*RHO, however, then there is a branch to
// label 650 or 680 with NTRITS=-1, instead of calculating F at XNEW.
}
case 60: {
printState(60); // XXX
final ArrayRealVector gnew = new ArrayRealVector(n);
final ArrayRealVector xbdi = new ArrayRealVector(n);
final ArrayRealVector s = new ArrayRealVector(n);
final ArrayRealVector hs = new ArrayRealVector(n);
final ArrayRealVector hred = new ArrayRealVector(n);
final double[] dsqCrvmin = trsbox(delta, gnew, xbdi, s,
hs, hred);
dsq = dsqCrvmin[0];
crvmin = dsqCrvmin[1];
// Computing MIN
double deltaOne = delta;
double deltaTwo = JdkMath.sqrt(dsq);
dnorm = JdkMath.min(deltaOne, deltaTwo);
if (dnorm < HALF * rho) {
ntrits = -1;
// Computing 2nd power
deltaOne = TEN * rho;
distsq = deltaOne * deltaOne;
if (getEvaluations() <= nfsav + 2) {
state = 650; break;
}
// The following choice between labels 650 and 680 depends on whether or
// not our work with the current RHO seems to be complete. Either RHO is
// decreased or termination occurs if the errors in the quadratic model at
// the last three interpolation points compare favourably with predictions
// of likely improvements to the model within distance HALF*RHO of XOPT.
// Computing MAX
deltaOne = JdkMath.max(diffa, diffb);
final double errbig = JdkMath.max(deltaOne, diffc);
final double frhosq = rho * ONE_OVER_EIGHT * rho;
if (crvmin > ZERO &&
errbig > frhosq * crvmin) {
state = 650; break;
}
final double bdtol = errbig / rho;
for (int j = 0; j < n; j++) {
double bdtest = bdtol;
if (newPoint.getEntry(j) == lowerDifference.getEntry(j)) {
bdtest = work1.getEntry(j);
}
if (newPoint.getEntry(j) == upperDifference.getEntry(j)) {
bdtest = -work1.getEntry(j);
}
if (bdtest < bdtol) {
double curv = modelSecondDerivativesValues.getEntry((j + j * j) / 2);
for (int k = 0; k < npt; k++) {
// Computing 2nd power
final double d1 = interpolationPoints.getEntry(k, j);
curv += modelSecondDerivativesParameters.getEntry(k) * (d1 * d1);
}
bdtest += HALF * curv * rho;
if (bdtest < bdtol) {
state = 650; break;
}
// throw new PathIsExploredException(); // XXX
}
}
state = 680; break;
}
++ntrits;
// Severe cancellation is likely to occur if XOPT is too far from XBASE.
// If the following test holds, then XBASE is shifted so that XOPT becomes
// zero. The appropriate changes are made to BMAT and to the second
// derivatives of the current model, beginning with the changes to BMAT
// that do not depend on ZMAT. VLAG is used temporarily for working space.
}
case 90: {
printState(90); // XXX
if (dsq <= xoptsq * ONE_OVER_A_THOUSAND) {
final double fracsq = xoptsq * ONE_OVER_FOUR;
double sumpq = ZERO;
// final RealVector sumVector
// = new ArrayRealVector(npt, -HALF * xoptsq).add(interpolationPoints.operate(trustRegionCenter));
for (int k = 0; k < npt; k++) {
sumpq += modelSecondDerivativesParameters.getEntry(k);
double sum = -HALF * xoptsq;
for (int i = 0; i < n; i++) {
sum += interpolationPoints.getEntry(k, i) * trustRegionCenterOffset.getEntry(i);
}
// sum = sumVector.getEntry(k); // XXX "testAckley" and "testDiffPow" fail.
work2.setEntry(k, sum);
final double temp = fracsq - HALF * sum;
for (int i = 0; i < n; i++) {
work1.setEntry(i, bMatrix.getEntry(k, i));
lagrangeValuesAtNewPoint.setEntry(i, sum * interpolationPoints.getEntry(k, i) + temp * trustRegionCenterOffset.getEntry(i));
final int ip = npt + i;
for (int j = 0; j <= i; j++) {
bMatrix.setEntry(ip, j,
bMatrix.getEntry(ip, j)
+ work1.getEntry(i) * lagrangeValuesAtNewPoint.getEntry(j)
+ lagrangeValuesAtNewPoint.getEntry(i) * work1.getEntry(j));
}
}
}
// Then the revisions of BMAT that depend on ZMAT are calculated.
for (int m = 0; m < nptm; m++) {
double sumz = ZERO;
double sumw = ZERO;
for (int k = 0; k < npt; k++) {
sumz += zMatrix.getEntry(k, m);
lagrangeValuesAtNewPoint.setEntry(k, work2.getEntry(k) * zMatrix.getEntry(k, m));
sumw += lagrangeValuesAtNewPoint.getEntry(k);
}
for (int j = 0; j < n; j++) {
double sum = (fracsq * sumz - HALF * sumw) * trustRegionCenterOffset.getEntry(j);
for (int k = 0; k < npt; k++) {
sum += lagrangeValuesAtNewPoint.getEntry(k) * interpolationPoints.getEntry(k, j);
}
work1.setEntry(j, sum);
for (int k = 0; k < npt; k++) {
bMatrix.setEntry(k, j,
bMatrix.getEntry(k, j)
+ sum * zMatrix.getEntry(k, m));
}
}
for (int i = 0; i < n; i++) {
final int ip = i + npt;
final double temp = work1.getEntry(i);
for (int j = 0; j <= i; j++) {
bMatrix.setEntry(ip, j,
bMatrix.getEntry(ip, j)
+ temp * work1.getEntry(j));
}
}
}
// The following instructions complete the shift, including the changes
// to the second derivative parameters of the quadratic model.
int ih = 0;
for (int j = 0; j < n; j++) {
work1.setEntry(j, -HALF * sumpq * trustRegionCenterOffset.getEntry(j));
for (int k = 0; k < npt; k++) {
work1.setEntry(j, work1.getEntry(j) + modelSecondDerivativesParameters.getEntry(k) * interpolationPoints.getEntry(k, j));
interpolationPoints.setEntry(k, j, interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j));
}
for (int i = 0; i <= j; i++) {
modelSecondDerivativesValues.setEntry(ih,
modelSecondDerivativesValues.getEntry(ih)
+ work1.getEntry(i) * trustRegionCenterOffset.getEntry(j)
+ trustRegionCenterOffset.getEntry(i) * work1.getEntry(j));
bMatrix.setEntry(npt + i, j, bMatrix.getEntry(npt + j, i));
ih++;
}
}
for (int i = 0; i < n; i++) {
originShift.setEntry(i, originShift.getEntry(i) + trustRegionCenterOffset.getEntry(i));
newPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
lowerDifference.setEntry(i, lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
upperDifference.setEntry(i, upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
trustRegionCenterOffset.setEntry(i, ZERO);
}
xoptsq = ZERO;
}
if (ntrits == 0) {
state = 210; break;
}
state = 230; break;
// XBASE is also moved to XOPT by a call of RESCUE. This calculation is
// more expensive than the previous shift, because new matrices BMAT and
// ZMAT are generated from scratch, which may include the replacement of
// interpolation points whose positions seem to be causing near linear
// dependence in the interpolation conditions. Therefore RESCUE is called
// only if rounding errors have reduced by at least a factor of two the
// denominator of the formula for updating the H matrix. It provides a
// useful safeguard, but is not invoked in most applications of BOBYQA.
}
case 210: {
printState(210); // XXX
// Pick two alternative vectors of variables, relative to XBASE, that
// are suitable as new positions of the KNEW-th interpolation point.
// Firstly, XNEW is set to the point on a line through XOPT and another
// interpolation point that minimizes the predicted value of the next
// denominator, subject to ||XNEW - XOPT|| .LEQ. ADELT and to the SL
// and SU bounds. Secondly, XALT is set to the best feasible point on
// a constrained version of the Cauchy step of the KNEW-th Lagrange
// function, the corresponding value of the square of this function
// being returned in CAUCHY. The choice between these alternatives is
// going to be made when the denominator is calculated.
final double[] alphaCauchy = altmov(knew, adelt);
alpha = alphaCauchy[0];
cauchy = alphaCauchy[1];
for (int i = 0; i < n; i++) {
trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
}
// Calculate VLAG and BETA for the current choice of D. The scalar
// product of D with XPT(K,.) is going to be held in W(NPT+K) for
// use when VQUAD is calculated.
}
case 230: {
printState(230); // XXX
for (int k = 0; k < npt; k++) {
double suma = ZERO;
double sumb = ZERO;
double sum = ZERO;
for (int j = 0; j < n; j++) {
suma += interpolationPoints.getEntry(k, j) * trialStepPoint.getEntry(j);
sumb += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
sum += bMatrix.getEntry(k, j) * trialStepPoint.getEntry(j);
}
work3.setEntry(k, suma * (HALF * suma + sumb));
lagrangeValuesAtNewPoint.setEntry(k, sum);
work2.setEntry(k, suma);
}
beta = ZERO;
for (int m = 0; m < nptm; m++) {
double sum = ZERO;
for (int k = 0; k < npt; k++) {
sum += zMatrix.getEntry(k, m) * work3.getEntry(k);
}
beta -= sum * sum;
for (int k = 0; k < npt; k++) {
lagrangeValuesAtNewPoint.setEntry(k, lagrangeValuesAtNewPoint.getEntry(k) + sum * zMatrix.getEntry(k, m));
}
}
dsq = ZERO;
double bsum = ZERO;
double dx = ZERO;
for (int j = 0; j < n; j++) {
// Computing 2nd power
final double d1 = trialStepPoint.getEntry(j);
dsq += d1 * d1;
double sum = ZERO;
for (int k = 0; k < npt; k++) {
sum += work3.getEntry(k) * bMatrix.getEntry(k, j);
}
bsum += sum * trialStepPoint.getEntry(j);
final int jp = npt + j;
for (int i = 0; i < n; i++) {
sum += bMatrix.getEntry(jp, i) * trialStepPoint.getEntry(i);
}
lagrangeValuesAtNewPoint.setEntry(jp, sum);
bsum += sum * trialStepPoint.getEntry(j);
dx += trialStepPoint.getEntry(j) * trustRegionCenterOffset.getEntry(j);
}
beta = dx * dx + dsq * (xoptsq + dx + dx + HALF * dsq) + beta - bsum; // Original
// beta += dx * dx + dsq * (xoptsq + dx + dx + HALF * dsq) - bsum; // XXX "testAckley" and "testDiffPow" fail.
// beta = dx * dx + dsq * (xoptsq + 2 * dx + HALF * dsq) + beta - bsum; // XXX "testDiffPow" fails.
lagrangeValuesAtNewPoint.setEntry(trustRegionCenterInterpolationPointIndex,
lagrangeValuesAtNewPoint.getEntry(trustRegionCenterInterpolationPointIndex) + ONE);
// If NTRITS is zero, the denominator may be increased by replacing
// the step D of ALTMOV by a Cauchy step. Then RESCUE may be called if
// rounding errors have damaged the chosen denominator.
if (ntrits == 0) {
// Computing 2nd power
final double d1 = lagrangeValuesAtNewPoint.getEntry(knew);
denom = d1 * d1 + alpha * beta;
if (denom < cauchy && cauchy > ZERO) {
for (int i = 0; i < n; i++) {
newPoint.setEntry(i, alternativeNewPoint.getEntry(i));
trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
}
cauchy = ZERO; // XXX Useful statement?
state = 230; break;
}
// Alternatively, if NTRITS is positive, then set KNEW to the index of
// the next interpolation point to be deleted to make room for a trust
// region step. Again RESCUE may be called if rounding errors have damaged_
// the chosen denominator, which is the reason for attempting to select
// KNEW before calculating the next value of the objective function.
} else {
final double delsq = delta * delta;
scaden = ZERO;
biglsq = ZERO;
knew = 0;
for (int k = 0; k < npt; k++) {
if (k == trustRegionCenterInterpolationPointIndex) {
continue;
}
double hdiag = ZERO;
for (int m = 0; m < nptm; m++) {
// Computing 2nd power
final double d1 = zMatrix.getEntry(k, m);
hdiag += d1 * d1;
}
// Computing 2nd power
final double d2 = lagrangeValuesAtNewPoint.getEntry(k);
final double den = beta * hdiag + d2 * d2;
distsq = ZERO;
for (int j = 0; j < n; j++) {
// Computing 2nd power
final double d3 = interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j);
distsq += d3 * d3;
}
// Computing MAX
// Computing 2nd power
final double d4 = distsq / delsq;
final double temp = JdkMath.max(ONE, d4 * d4);
if (temp * den > scaden) {
scaden = temp * den;
knew = k;
denom = den;
}
// Computing MAX
// Computing 2nd power
final double d5 = lagrangeValuesAtNewPoint.getEntry(k);
biglsq = JdkMath.max(biglsq, temp * (d5 * d5));
}
}
// Put the variables for the next calculation of the objective function
// in XNEW, with any adjustments for the bounds.
// Calculate the value of the objective function at XBASE+XNEW, unless
// the limit on the number of calculations of F has been reached.
}
case 360: {
printState(360); // XXX
for (int i = 0; i < n; i++) {
// Computing MIN
// Computing MAX
final double d3 = lowerBound[i];
final double d4 = originShift.getEntry(i) + newPoint.getEntry(i);
final double d1 = JdkMath.max(d3, d4);
final double d2 = upperBound[i];
currentBest.setEntry(i, JdkMath.min(d1, d2));
if (newPoint.getEntry(i) == lowerDifference.getEntry(i)) {
currentBest.setEntry(i, lowerBound[i]);
}
if (newPoint.getEntry(i) == upperDifference.getEntry(i)) {
currentBest.setEntry(i, upperBound[i]);
}
}
f = getObjectiveFunction().value(currentBest.toArray());
if (!isMinimize) {
f = -f;
}
if (ntrits == -1) {
fsave = f;
state = 720; break;
}
// Use the quadratic model to predict the change in F due to the step D,
// and set DIFF to the error of this prediction.
final double fopt = fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex);
double vquad = ZERO;
int ih = 0;
for (int j = 0; j < n; j++) {
vquad += trialStepPoint.getEntry(j) * gradientAtTrustRegionCenter.getEntry(j);
for (int i = 0; i <= j; i++) {
double temp = trialStepPoint.getEntry(i) * trialStepPoint.getEntry(j);
if (i == j) {
temp *= HALF;
}
vquad += modelSecondDerivativesValues.getEntry(ih) * temp;
ih++;
}
}
for (int k = 0; k < npt; k++) {
// Computing 2nd power
final double d1 = work2.getEntry(k);
final double d2 = d1 * d1; // "d1" must be squared first to prevent test failures.
vquad += HALF * modelSecondDerivativesParameters.getEntry(k) * d2;
}
final double diff = f - fopt - vquad;
diffc = diffb;
diffb = diffa;
diffa = JdkMath.abs(diff);
if (dnorm > rho) {
nfsav = getEvaluations();
}
// Pick the next value of DELTA after a trust region step.
if (ntrits > 0) {
if (vquad >= ZERO) {
throw new MathIllegalStateException(LocalizedFormats.TRUST_REGION_STEP_FAILED, vquad);
}
ratio = (f - fopt) / vquad;
final double hDelta = HALF * delta;
if (ratio <= ONE_OVER_TEN) {
// Computing MIN
delta = JdkMath.min(hDelta, dnorm);
} else if (ratio <= .7) {
// Computing MAX
delta = JdkMath.max(hDelta, dnorm);
} else {
// Computing MAX
delta = JdkMath.max(hDelta, 2 * dnorm);
}
if (delta <= rho * 1.5) {
delta = rho;
}
// Recalculate KNEW and DENOM if the new F is less than FOPT.
if (f < fopt) {
final int ksav = knew;
final double densav = denom;
final double delsq = delta * delta;
scaden = ZERO;
biglsq = ZERO;
knew = 0;
for (int k = 0; k < npt; k++) {
double hdiag = ZERO;
for (int m = 0; m < nptm; m++) {
// Computing 2nd power
final double d1 = zMatrix.getEntry(k, m);
hdiag += d1 * d1;
}
// Computing 2nd power
final double d1 = lagrangeValuesAtNewPoint.getEntry(k);
final double den = beta * hdiag + d1 * d1;
distsq = ZERO;
for (int j = 0; j < n; j++) {
// Computing 2nd power
final double d2 = interpolationPoints.getEntry(k, j) - newPoint.getEntry(j);
distsq += d2 * d2;
}
// Computing MAX
// Computing 2nd power
final double d3 = distsq / delsq;
final double temp = JdkMath.max(ONE, d3 * d3);
if (temp * den > scaden) {
scaden = temp * den;
knew = k;
denom = den;
}
// Computing MAX
// Computing 2nd power
final double d4 = lagrangeValuesAtNewPoint.getEntry(k);
final double d5 = temp * (d4 * d4);
biglsq = JdkMath.max(biglsq, d5);
}
if (scaden <= HALF * biglsq) {
knew = ksav;
denom = densav;
}
}
}
// Update BMAT and ZMAT, so that the KNEW-th interpolation point can be
// moved. Also update the second derivative terms of the model.
update(beta, denom, knew);
ih = 0;
final double pqold = modelSecondDerivativesParameters.getEntry(knew);
modelSecondDerivativesParameters.setEntry(knew, ZERO);
for (int i = 0; i < n; i++) {
final double temp = pqold * interpolationPoints.getEntry(knew, i);
for (int j = 0; j <= i; j++) {
modelSecondDerivativesValues.setEntry(ih, modelSecondDerivativesValues.getEntry(ih) + temp * interpolationPoints.getEntry(knew, j));
ih++;
}
}
for (int m = 0; m < nptm; m++) {
final double temp = diff * zMatrix.getEntry(knew, m);
for (int k = 0; k < npt; k++) {
modelSecondDerivativesParameters.setEntry(k, modelSecondDerivativesParameters.getEntry(k) + temp * zMatrix.getEntry(k, m));
}
}
// Include the new interpolation point, and make the changes to GOPT at
// the old XOPT that are caused by the updating of the quadratic model.
fAtInterpolationPoints.setEntry(knew, f);
for (int i = 0; i < n; i++) {
interpolationPoints.setEntry(knew, i, newPoint.getEntry(i));
work1.setEntry(i, bMatrix.getEntry(knew, i));
}
for (int k = 0; k < npt; k++) {
double suma = ZERO;
for (int m = 0; m < nptm; m++) {
suma += zMatrix.getEntry(knew, m) * zMatrix.getEntry(k, m);
}
double sumb = ZERO;
for (int j = 0; j < n; j++) {
sumb += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
}
final double temp = suma * sumb;
for (int i = 0; i < n; i++) {
work1.setEntry(i, work1.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
}
}
for (int i = 0; i < n; i++) {
gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + diff * work1.getEntry(i));
}
// Update XOPT, GOPT and KOPT if the new calculated F is less than FOPT.
if (f < fopt) {
trustRegionCenterInterpolationPointIndex = knew;
xoptsq = ZERO;
ih = 0;
for (int j = 0; j < n; j++) {
trustRegionCenterOffset.setEntry(j, newPoint.getEntry(j));
// Computing 2nd power
final double d1 = trustRegionCenterOffset.getEntry(j);
xoptsq += d1 * d1;
for (int i = 0; i <= j; i++) {
if (i < j) {
gradientAtTrustRegionCenter.setEntry(j, gradientAtTrustRegionCenter.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * trialStepPoint.getEntry(i));
}
gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * trialStepPoint.getEntry(j));
ih++;
}
}
for (int k = 0; k < npt; k++) {
double temp = ZERO;
for (int j = 0; j < n; j++) {
temp += interpolationPoints.getEntry(k, j) * trialStepPoint.getEntry(j);
}
temp *= modelSecondDerivativesParameters.getEntry(k);
for (int i = 0; i < n; i++) {
gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
}
}
}
// Calculate the parameters of the least Frobenius norm interpolant to
// the current data, the gradient of this interpolant at XOPT being put
// into VLAG(NPT+I), I=1,2,...,N.
if (ntrits > 0) {
for (int k = 0; k < npt; k++) {
lagrangeValuesAtNewPoint.setEntry(k, fAtInterpolationPoints.getEntry(k) - fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex));
work3.setEntry(k, ZERO);
}
for (int j = 0; j < nptm; j++) {
double sum = ZERO;
for (int k = 0; k < npt; k++) {
sum += zMatrix.getEntry(k, j) * lagrangeValuesAtNewPoint.getEntry(k);
}
for (int k = 0; k < npt; k++) {
work3.setEntry(k, work3.getEntry(k) + sum * zMatrix.getEntry(k, j));
}
}
for (int k = 0; k < npt; k++) {
double sum = ZERO;
for (int j = 0; j < n; j++) {
sum += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
}
work2.setEntry(k, work3.getEntry(k));
work3.setEntry(k, sum * work3.getEntry(k));
}
double gqsq = ZERO;
double gisq = ZERO;
for (int i = 0; i < n; i++) {
double sum = ZERO;
for (int k = 0; k < npt; k++) {
sum += bMatrix.getEntry(k, i) *
lagrangeValuesAtNewPoint.getEntry(k) + interpolationPoints.getEntry(k, i) * work3.getEntry(k);
}
if (trustRegionCenterOffset.getEntry(i) == lowerDifference.getEntry(i)) {
// Computing MIN
// Computing 2nd power
final double d1 = JdkMath.min(ZERO, gradientAtTrustRegionCenter.getEntry(i));
gqsq += d1 * d1;
// Computing 2nd power
final double d2 = JdkMath.min(ZERO, sum);
gisq += d2 * d2;
} else if (trustRegionCenterOffset.getEntry(i) == upperDifference.getEntry(i)) {
// Computing MAX
// Computing 2nd power
final double d1 = JdkMath.max(ZERO, gradientAtTrustRegionCenter.getEntry(i));
gqsq += d1 * d1;
// Computing 2nd power
final double d2 = JdkMath.max(ZERO, sum);
gisq += d2 * d2;
} else {
// Computing 2nd power
final double d1 = gradientAtTrustRegionCenter.getEntry(i);
gqsq += d1 * d1;
gisq += sum * sum;
}
lagrangeValuesAtNewPoint.setEntry(npt + i, sum);
}
// Test whether to replace the new quadratic model by the least Frobenius
// norm interpolant, making the replacement if the test is satisfied.
++itest;
if (gqsq < TEN * gisq) {
itest = 0;
}
if (itest >= 3) {
for (int i = 0, max = JdkMath.max(npt, nh); i < max; i++) {
if (i < n) {
gradientAtTrustRegionCenter.setEntry(i, lagrangeValuesAtNewPoint.getEntry(npt + i));
}
if (i < npt) {
modelSecondDerivativesParameters.setEntry(i, work2.getEntry(i));
}
if (i < nh) {
modelSecondDerivativesValues.setEntry(i, ZERO);
}
itest = 0;
}
}
}
// If a trust region step has provided a sufficient decrease in F, then
// branch for another trust region calculation. The case NTRITS=0 occurs
// when the new interpolation point was reached by an alternative step.
if (ntrits == 0) {
state = 60; break;
}
if (f <= fopt + ONE_OVER_TEN * vquad) {
state = 60; break;
}
// Alternatively, find out if the interpolation points are close enough
// to the best point so far.
// Computing MAX
// Computing 2nd power
final double d1 = TWO * delta;
// Computing 2nd power
final double d2 = TEN * rho;
distsq = JdkMath.max(d1 * d1, d2 * d2);
}
case 650: {
printState(650); // XXX
knew = -1;
for (int k = 0; k < npt; k++) {
double sum = ZERO;
for (int j = 0; j < n; j++) {
// Computing 2nd power
final double d1 = interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j);
sum += d1 * d1;
}
if (sum > distsq) {
knew = k;
distsq = sum;
}
}
// If KNEW is positive, then ALTMOV finds alternative new positions for
// the KNEW-th interpolation point within distance ADELT of XOPT. It is
// reached via label 90. Otherwise, there is a branch to label 60 for
// another trust region iteration, unless the calculations with the
// current RHO are complete.
if (knew >= 0) {
final double dist = JdkMath.sqrt(distsq);
if (ntrits == -1) {
// Computing MIN
delta = JdkMath.min(ONE_OVER_TEN * delta, HALF * dist);
if (delta <= rho * 1.5) {
delta = rho;
}
}
ntrits = 0;
// Computing MAX
// Computing MIN
final double d1 = JdkMath.min(ONE_OVER_TEN * dist, delta);
adelt = JdkMath.max(d1, rho);
dsq = adelt * adelt;
state = 90; break;
}
if (ntrits == -1) {
state = 680; break;
}
if (ratio > ZERO) {
state = 60; break;
}
if (JdkMath.max(delta, dnorm) > rho) {
state = 60; break;
}
// The calculations with the current value of RHO are complete. Pick the
// next values of RHO and DELTA.
}
case 680: {
printState(680); // XXX
if (rho > stoppingTrustRegionRadius) {
delta = HALF * rho;
ratio = rho / stoppingTrustRegionRadius;
if (ratio <= SIXTEEN) {
rho = stoppingTrustRegionRadius;
} else if (ratio <= TWO_HUNDRED_FIFTY) {
rho = JdkMath.sqrt(ratio) * stoppingTrustRegionRadius;
} else {
rho *= ONE_OVER_TEN;
}
delta = JdkMath.max(delta, rho);
ntrits = 0;
nfsav = getEvaluations();
state = 60; break;
}
// Return from the calculation, after another Newton-Raphson step, if
// it is too short to have been tried before.
if (ntrits == -1) {
state = 360; break;
}
}
case 720: {
printState(720); // XXX
if (fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex) <= fsave) {
for (int i = 0; i < n; i++) {
// Computing MIN
// Computing MAX
final double d3 = lowerBound[i];
final double d4 = originShift.getEntry(i) + trustRegionCenterOffset.getEntry(i);
final double d1 = JdkMath.max(d3, d4);
final double d2 = upperBound[i];
currentBest.setEntry(i, JdkMath.min(d1, d2));
if (trustRegionCenterOffset.getEntry(i) == lowerDifference.getEntry(i)) {
currentBest.setEntry(i, lowerBound[i]);
}
if (trustRegionCenterOffset.getEntry(i) == upperDifference.getEntry(i)) {
currentBest.setEntry(i, upperBound[i]);
}
}
f = fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex);
}
return f;
}
default: {
throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "bobyqb");
}}}
} // bobyqb
// ----------------------------------------------------------------------------------------
/**
* The arguments N, NPT, XPT, XOPT, BMAT, ZMAT, NDIM, SL and SU all have
* the same meanings as the corresponding arguments of BOBYQB.
* KOPT is the index of the optimal interpolation point.
* KNEW is the index of the interpolation point that is going to be moved.
* ADELT is the current trust region bound.
* XNEW will be set to a suitable new position for the interpolation point
* XPT(KNEW,.). Specifically, it satisfies the SL, SU and trust region
* bounds and it should provide a large denominator in the next call of
* UPDATE. The step XNEW-XOPT from XOPT is restricted to moves along the
* straight lines through XOPT and another interpolation point.
* XALT also provides a large value of the modulus of the KNEW-th Lagrange
* function subject to the constraints that have been mentioned, its main
* difference from XNEW being that XALT-XOPT is a constrained version of
* the Cauchy step within the trust region. An exception is that XALT is
* not calculated if all components of GLAG (see below) are zero.
* ALPHA will be set to the KNEW-th diagonal element of the H matrix.
* CAUCHY will be set to the square of the KNEW-th Lagrange function at
* the step XALT-XOPT from XOPT for the vector XALT that is returned,
* except that CAUCHY is set to zero if XALT is not calculated.
* GLAG is a working space vector of length N for the gradient of the
* KNEW-th Lagrange function at XOPT.
* HCOL is a working space vector of length NPT for the second derivative
* coefficients of the KNEW-th Lagrange function.
* W is a working space vector of length 2N that is going to hold the
* constrained Cauchy step from XOPT of the Lagrange function, followed
* by the downhill version of XALT when the uphill step is calculated.
*
* Set the first NPT components of W to the leading elements of the
* KNEW-th column of the H matrix.
* @param knew
* @param adelt
* @return { alpha, cauchy }
*/
private double[] altmov(
int knew,
double adelt
) {
printMethod(); // XXX
final int n = currentBest.getDimension();
final int npt = numberOfInterpolationPoints;
final ArrayRealVector glag = new ArrayRealVector(n);
final ArrayRealVector hcol = new ArrayRealVector(npt);
final ArrayRealVector work1 = new ArrayRealVector(n);
final ArrayRealVector work2 = new ArrayRealVector(n);
for (int k = 0; k < npt; k++) {
hcol.setEntry(k, ZERO);
}
for (int j = 0, max = npt - n - 1; j < max; j++) {
final double tmp = zMatrix.getEntry(knew, j);
for (int k = 0; k < npt; k++) {
hcol.setEntry(k, hcol.getEntry(k) + tmp * zMatrix.getEntry(k, j));
}
}
final double alpha = hcol.getEntry(knew);
final double ha = HALF * alpha;
// Calculate the gradient of the KNEW-th Lagrange function at XOPT.
for (int i = 0; i < n; i++) {
glag.setEntry(i, bMatrix.getEntry(knew, i));
}
for (int k = 0; k < npt; k++) {
double tmp = ZERO;
for (int j = 0; j < n; j++) {
tmp += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
}
tmp *= hcol.getEntry(k);
for (int i = 0; i < n; i++) {
glag.setEntry(i, glag.getEntry(i) + tmp * interpolationPoints.getEntry(k, i));
}
}
// Search for a large denominator along the straight lines through XOPT
// and another interpolation point. SLBD and SUBD will be lower and upper
// bounds on the step along each of these lines in turn. PREDSQ will be
// set to the square of the predicted denominator for each line. PRESAV
// will be set to the largest admissible value of PREDSQ that occurs.
double presav = ZERO;
double step = Double.NaN;
int ksav = 0;
int ibdsav = 0;
double stpsav = 0;
for (int k = 0; k < npt; k++) {
if (k == trustRegionCenterInterpolationPointIndex) {
continue;
}
double dderiv = ZERO;
double distsq = ZERO;
for (int i = 0; i < n; i++) {
final double tmp = interpolationPoints.getEntry(k, i) - trustRegionCenterOffset.getEntry(i);
dderiv += glag.getEntry(i) * tmp;
distsq += tmp * tmp;
}
double subd = adelt / JdkMath.sqrt(distsq);
double slbd = -subd;
int ilbd = 0;
int iubd = 0;
final double sumin = JdkMath.min(ONE, subd);
// Revise SLBD and SUBD if necessary because of the bounds in SL and SU.
for (int i = 0; i < n; i++) {
final double tmp = interpolationPoints.getEntry(k, i) - trustRegionCenterOffset.getEntry(i);
if (tmp > ZERO) {
if (slbd * tmp < lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
slbd = (lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp;
ilbd = -i - 1;
}
if (subd * tmp > upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
// Computing MAX
subd = JdkMath.max(sumin,
(upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp);
iubd = i + 1;
}
} else if (tmp < ZERO) {
if (slbd * tmp > upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
slbd = (upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp;
ilbd = i + 1;
}
if (subd * tmp < lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) {
// Computing MAX
subd = JdkMath.max(sumin,
(lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i)) / tmp);
iubd = -i - 1;
}
}
}
// Seek a large modulus of the KNEW-th Lagrange function when the index
// of the other interpolation point on the line through XOPT is KNEW.
step = slbd;
int isbd = ilbd;
double vlag = Double.NaN;
if (k == knew) {
final double diff = dderiv - ONE;
vlag = slbd * (dderiv - slbd * diff);
final double d1 = subd * (dderiv - subd * diff);
if (JdkMath.abs(d1) > JdkMath.abs(vlag)) {
step = subd;
vlag = d1;
isbd = iubd;
}
final double d2 = HALF * dderiv;
final double d3 = d2 - diff * slbd;
final double d4 = d2 - diff * subd;
if (d3 * d4 < ZERO) {
final double d5 = d2 * d2 / diff;
if (JdkMath.abs(d5) > JdkMath.abs(vlag)) {
step = d2 / diff;
vlag = d5;
isbd = 0;
}
}
// Search along each of the other lines through XOPT and another point.
} else {
vlag = slbd * (ONE - slbd);
final double tmp = subd * (ONE - subd);
if (JdkMath.abs(tmp) > JdkMath.abs(vlag)) {
step = subd;
vlag = tmp;
isbd = iubd;
}
if (subd > HALF && JdkMath.abs(vlag) < ONE_OVER_FOUR) {
step = HALF;
vlag = ONE_OVER_FOUR;
isbd = 0;
}
vlag *= dderiv;
}
// Calculate PREDSQ for the current line search and maintain PRESAV.
final double tmp = step * (ONE - step) * distsq;
final double predsq = vlag * vlag * (vlag * vlag + ha * tmp * tmp);
if (predsq > presav) {
presav = predsq;
ksav = k;
stpsav = step;
ibdsav = isbd;
}
}
// Construct XNEW in a way that satisfies the bound constraints exactly.
for (int i = 0; i < n; i++) {
final double tmp = trustRegionCenterOffset.getEntry(i) + stpsav * (interpolationPoints.getEntry(ksav, i) - trustRegionCenterOffset.getEntry(i));
newPoint.setEntry(i, JdkMath.max(lowerDifference.getEntry(i),
JdkMath.min(upperDifference.getEntry(i), tmp)));
}
if (ibdsav < 0) {
newPoint.setEntry(-ibdsav - 1, lowerDifference.getEntry(-ibdsav - 1));
}
if (ibdsav > 0) {
newPoint.setEntry(ibdsav - 1, upperDifference.getEntry(ibdsav - 1));
}
// Prepare for the iterative method that assembles the constrained Cauchy
// step in W. The sum of squares of the fixed components of W is formed in
// WFIXSQ, and the free components of W are set to BIGSTP.
final double bigstp = adelt + adelt;
int iflag = 0;
double cauchy = Double.NaN;
double csave = ZERO;
while (true) {
double wfixsq = ZERO;
double ggfree = ZERO;
for (int i = 0; i < n; i++) {
final double glagValue = glag.getEntry(i);
work1.setEntry(i, ZERO);
if (JdkMath.min(trustRegionCenterOffset.getEntry(i) - lowerDifference.getEntry(i), glagValue) > ZERO ||
JdkMath.max(trustRegionCenterOffset.getEntry(i) - upperDifference.getEntry(i), glagValue) < ZERO) {
work1.setEntry(i, bigstp);
// Computing 2nd power
ggfree += glagValue * glagValue;
}
}
if (ggfree == ZERO) {
return new double[] { alpha, ZERO };
}
// Investigate whether more components of W can be fixed.
final double tmp1 = adelt * adelt - wfixsq;
if (tmp1 > ZERO) {
step = JdkMath.sqrt(tmp1 / ggfree);
ggfree = ZERO;
for (int i = 0; i < n; i++) {
if (work1.getEntry(i) == bigstp) {
final double tmp2 = trustRegionCenterOffset.getEntry(i) - step * glag.getEntry(i);
if (tmp2 <= lowerDifference.getEntry(i)) {
work1.setEntry(i, lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
// Computing 2nd power
final double d1 = work1.getEntry(i);
wfixsq += d1 * d1;
} else if (tmp2 >= upperDifference.getEntry(i)) {
work1.setEntry(i, upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
// Computing 2nd power
final double d1 = work1.getEntry(i);
wfixsq += d1 * d1;
} else {
// Computing 2nd power
final double d1 = glag.getEntry(i);
ggfree += d1 * d1;
}
}
}
}
// Set the remaining free components of W and all components of XALT,
// except that W may be scaled later.
double gw = ZERO;
for (int i = 0; i < n; i++) {
final double glagValue = glag.getEntry(i);
if (work1.getEntry(i) == bigstp) {
work1.setEntry(i, -step * glagValue);
final double min = JdkMath.min(upperDifference.getEntry(i),
trustRegionCenterOffset.getEntry(i) + work1.getEntry(i));
alternativeNewPoint.setEntry(i, JdkMath.max(lowerDifference.getEntry(i), min));
} else if (work1.getEntry(i) == ZERO) {
alternativeNewPoint.setEntry(i, trustRegionCenterOffset.getEntry(i));
} else if (glagValue > ZERO) {
alternativeNewPoint.setEntry(i, lowerDifference.getEntry(i));
} else {
alternativeNewPoint.setEntry(i, upperDifference.getEntry(i));
}
gw += glagValue * work1.getEntry(i);
}
// Set CURV to the curvature of the KNEW-th Lagrange function along W.
// Scale W by a factor less than one if that can reduce the modulus of
// the Lagrange function at XOPT+W. Set CAUCHY to the final value of
// the square of this function.
double curv = ZERO;
for (int k = 0; k < npt; k++) {
double tmp = ZERO;
for (int j = 0; j < n; j++) {
tmp += interpolationPoints.getEntry(k, j) * work1.getEntry(j);
}
curv += hcol.getEntry(k) * tmp * tmp;
}
if (iflag == 1) {
curv = -curv;
}
if (curv > -gw &&
curv < -gw * (ONE + JdkMath.sqrt(TWO))) {
final double scale = -gw / curv;
for (int i = 0; i < n; i++) {
final double tmp = trustRegionCenterOffset.getEntry(i) + scale * work1.getEntry(i);
alternativeNewPoint.setEntry(i, JdkMath.max(lowerDifference.getEntry(i),
JdkMath.min(upperDifference.getEntry(i), tmp)));
}
// Computing 2nd power
final double d1 = HALF * gw * scale;
cauchy = d1 * d1;
} else {
// Computing 2nd power
final double d1 = gw + HALF * curv;
cauchy = d1 * d1;
}
// If IFLAG is zero, then XALT is calculated as before after reversing
// the sign of GLAG. Thus two XALT vectors become available. The one that
// is chosen is the one that gives the larger value of CAUCHY.
if (iflag == 0) {
for (int i = 0; i < n; i++) {
glag.setEntry(i, -glag.getEntry(i));
work2.setEntry(i, alternativeNewPoint.getEntry(i));
}
csave = cauchy;
iflag = 1;
} else {
break;
}
}
if (csave > cauchy) {
for (int i = 0; i < n; i++) {
alternativeNewPoint.setEntry(i, work2.getEntry(i));
}
cauchy = csave;
}
return new double[] { alpha, cauchy };
} // altmov
// ----------------------------------------------------------------------------------------
/**
* SUBROUTINE PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ,
* BMAT and ZMAT for the first iteration, and it maintains the values of
* NF and KOPT. The vector X is also changed by PRELIM.
*
* The arguments N, NPT, X, XL, XU, RHOBEG, IPRINT and MAXFUN are the
* same as the corresponding arguments in SUBROUTINE BOBYQA.
* The arguments XBASE, XPT, FVAL, HQ, PQ, BMAT, ZMAT, NDIM, SL and SU
* are the same as the corresponding arguments in BOBYQB, the elements
* of SL and SU being set in BOBYQA.
* GOPT is usually the gradient of the quadratic model at XOPT+XBASE, but
* it is set by PRELIM to the gradient of the quadratic model at XBASE.
* If XOPT is nonzero, BOBYQB will change it to its usual value later.
* NF is maintaned as the number of calls of CALFUN so far.
* KOPT will be such that the least calculated value of F so far is at
* the point XPT(KOPT,.)+XBASE in the space of the variables.
*
* @param lowerBound Lower bounds.
* @param upperBound Upper bounds.
*/
private void prelim(double[] lowerBound,
double[] upperBound) {
printMethod(); // XXX
final int n = currentBest.getDimension();
final int npt = numberOfInterpolationPoints;
final int ndim = bMatrix.getRowDimension();
final double rhosq = initialTrustRegionRadius * initialTrustRegionRadius;
final double recip = 1d / rhosq;
final int np = n + 1;
// Set XBASE to the initial vector of variables, and set the initial
// elements of XPT, BMAT, HQ, PQ and ZMAT to zero.
for (int j = 0; j < n; j++) {
originShift.setEntry(j, currentBest.getEntry(j));
for (int k = 0; k < npt; k++) {
interpolationPoints.setEntry(k, j, ZERO);
}
for (int i = 0; i < ndim; i++) {
bMatrix.setEntry(i, j, ZERO);
}
}
for (int i = 0, max = n * np / 2; i < max; i++) {
modelSecondDerivativesValues.setEntry(i, ZERO);
}
for (int k = 0; k < npt; k++) {
modelSecondDerivativesParameters.setEntry(k, ZERO);
for (int j = 0, max = npt - np; j < max; j++) {
zMatrix.setEntry(k, j, ZERO);
}
}
// Begin the initialization procedure. NF becomes one more than the number
// of function values so far. The coordinates of the displacement of the
// next initial interpolation point from XBASE are set in XPT(NF+1,.).
int ipt = 0;
int jpt = 0;
double fbeg = Double.NaN;
do {
final int nfm = getEvaluations();
final int nfx = nfm - n;
final int nfmm = nfm - 1;
final int nfxm = nfx - 1;
double stepa = 0;
double stepb = 0;
if (nfm <= 2 * n) {
if (nfm >= 1 &&
nfm <= n) {
stepa = initialTrustRegionRadius;
if (upperDifference.getEntry(nfmm) == ZERO) {
stepa = -stepa;
// throw new PathIsExploredException(); // XXX
}
interpolationPoints.setEntry(nfm, nfmm, stepa);
} else if (nfm > n) {
stepa = interpolationPoints.getEntry(nfx, nfxm);
stepb = -initialTrustRegionRadius;
if (lowerDifference.getEntry(nfxm) == ZERO) {
stepb = JdkMath.min(TWO * initialTrustRegionRadius, upperDifference.getEntry(nfxm));
// throw new PathIsExploredException(); // XXX
}
if (upperDifference.getEntry(nfxm) == ZERO) {
stepb = JdkMath.max(-TWO * initialTrustRegionRadius, lowerDifference.getEntry(nfxm));
// throw new PathIsExploredException(); // XXX
}
interpolationPoints.setEntry(nfm, nfxm, stepb);
}
} else {
final int tmp1 = (nfm - np) / n;
jpt = nfm - tmp1 * n - n;
ipt = jpt + tmp1;
if (ipt > n) {
final int tmp2 = jpt;
jpt = ipt - n;
ipt = tmp2;
// throw new PathIsExploredException(); // XXX
}
final int iptMinus1 = ipt - 1;
final int jptMinus1 = jpt - 1;
interpolationPoints.setEntry(nfm, iptMinus1, interpolationPoints.getEntry(ipt, iptMinus1));
interpolationPoints.setEntry(nfm, jptMinus1, interpolationPoints.getEntry(jpt, jptMinus1));
}
// Calculate the next value of F. The least function value so far and
// its index are required.
for (int j = 0; j < n; j++) {
currentBest.setEntry(j, JdkMath.min(JdkMath.max(lowerBound[j],
originShift.getEntry(j) + interpolationPoints.getEntry(nfm, j)),
upperBound[j]));
if (interpolationPoints.getEntry(nfm, j) == lowerDifference.getEntry(j)) {
currentBest.setEntry(j, lowerBound[j]);
}
if (interpolationPoints.getEntry(nfm, j) == upperDifference.getEntry(j)) {
currentBest.setEntry(j, upperBound[j]);
}
}
final double objectiveValue = getObjectiveFunction().value(currentBest.toArray());
final double f = isMinimize ? objectiveValue : -objectiveValue;
final int numEval = getEvaluations(); // nfm + 1
fAtInterpolationPoints.setEntry(nfm, f);
if (numEval == 1) {
fbeg = f;
trustRegionCenterInterpolationPointIndex = 0;
} else if (f < fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex)) {
trustRegionCenterInterpolationPointIndex = nfm;
}
// Set the nonzero initial elements of BMAT and the quadratic model in the
// cases when NF is at most 2*N+1. If NF exceeds N+1, then the positions
// of the NF-th and (NF-N)-th interpolation points may be switched, in
// order that the function value at the first of them contributes to the
// off-diagonal second derivative terms of the initial quadratic model.
if (numEval <= 2 * n + 1) {
if (numEval >= 2 &&
numEval <= n + 1) {
gradientAtTrustRegionCenter.setEntry(nfmm, (f - fbeg) / stepa);
if (npt < numEval + n) {
final double oneOverStepA = ONE / stepa;
bMatrix.setEntry(0, nfmm, -oneOverStepA);
bMatrix.setEntry(nfm, nfmm, oneOverStepA);
bMatrix.setEntry(npt + nfmm, nfmm, -HALF * rhosq);
// throw new PathIsExploredException(); // XXX
}
} else if (numEval >= n + 2) {
final int ih = nfx * (nfx + 1) / 2 - 1;
final double tmp = (f - fbeg) / stepb;
final double diff = stepb - stepa;
modelSecondDerivativesValues.setEntry(ih, TWO * (tmp - gradientAtTrustRegionCenter.getEntry(nfxm)) / diff);
gradientAtTrustRegionCenter.setEntry(nfxm, (gradientAtTrustRegionCenter.getEntry(nfxm) * stepb - tmp * stepa) / diff);
if (stepa * stepb < ZERO && f < fAtInterpolationPoints.getEntry(nfm - n)) {
fAtInterpolationPoints.setEntry(nfm, fAtInterpolationPoints.getEntry(nfm - n));
fAtInterpolationPoints.setEntry(nfm - n, f);
if (trustRegionCenterInterpolationPointIndex == nfm) {
trustRegionCenterInterpolationPointIndex = nfm - n;
}
interpolationPoints.setEntry(nfm - n, nfxm, stepb);
interpolationPoints.setEntry(nfm, nfxm, stepa);
}
bMatrix.setEntry(0, nfxm, -(stepa + stepb) / (stepa * stepb));
bMatrix.setEntry(nfm, nfxm, -HALF / interpolationPoints.getEntry(nfm - n, nfxm));
bMatrix.setEntry(nfm - n, nfxm,
-bMatrix.getEntry(0, nfxm) - bMatrix.getEntry(nfm, nfxm));
zMatrix.setEntry(0, nfxm, JdkMath.sqrt(TWO) / (stepa * stepb));
zMatrix.setEntry(nfm, nfxm, JdkMath.sqrt(HALF) / rhosq);
// zMatrix.setEntry(nfm, nfxm, JdkMath.sqrt(HALF) * recip); // XXX "testAckley" and "testDiffPow" fail.
zMatrix.setEntry(nfm - n, nfxm,
-zMatrix.getEntry(0, nfxm) - zMatrix.getEntry(nfm, nfxm));
}
// Set the off-diagonal second derivatives of the Lagrange functions and
// the initial quadratic model.
} else {
zMatrix.setEntry(0, nfxm, recip);
zMatrix.setEntry(nfm, nfxm, recip);
zMatrix.setEntry(ipt, nfxm, -recip);
zMatrix.setEntry(jpt, nfxm, -recip);
final int ih = ipt * (ipt - 1) / 2 + jpt - 1;
final double tmp = interpolationPoints.getEntry(nfm, ipt - 1) * interpolationPoints.getEntry(nfm, jpt - 1);
modelSecondDerivativesValues.setEntry(ih, (fbeg - fAtInterpolationPoints.getEntry(ipt) - fAtInterpolationPoints.getEntry(jpt) + f) / tmp);
// throw new PathIsExploredException(); // XXX
}
} while (getEvaluations() < npt);
} // prelim
// ----------------------------------------------------------------------------------------
/**
* A version of the truncated conjugate gradient is applied. If a line
* search is restricted by a constraint, then the procedure is restarted,
* the values of the variables that are at their bounds being fixed. If
* the trust region boundary is reached, then further changes may be made
* to D, each one being in the two dimensional space that is spanned
* by the current D and the gradient of Q at XOPT+D, staying on the trust
* region boundary. Termination occurs when the reduction in Q seems to
* be close to the greatest reduction that can be achieved.
* The arguments N, NPT, XPT, XOPT, GOPT, HQ, PQ, SL and SU have the same
* meanings as the corresponding arguments of BOBYQB.
* DELTA is the trust region radius for the present calculation, which
* seeks a small value of the quadratic model within distance DELTA of
* XOPT subject to the bounds on the variables.
* XNEW will be set to a new vector of variables that is approximately
* the one that minimizes the quadratic model within the trust region
* subject to the SL and SU constraints on the variables. It satisfies
* as equations the bounds that become active during the calculation.
* D is the calculated trial step from XOPT, generated iteratively from an
* initial value of zero. Thus XNEW is XOPT+D after the final iteration.
* GNEW holds the gradient of the quadratic model at XOPT+D. It is updated
* when D is updated.
* xbdi.get( is a working space vector. For I=1,2,...,N, the element xbdi.get((I) is
* set to -1.0, 0.0, or 1.0, the value being nonzero if and only if the
* I-th variable has become fixed at a bound, the bound being SL(I) or
* SU(I) in the case xbdi.get((I)=-1.0 or xbdi.get((I)=1.0, respectively. This
* information is accumulated during the construction of XNEW.
* The arrays S, HS and HRED are also used for working space. They hold the
* current search direction, and the changes in the gradient of Q along S
* and the reduced D, respectively, where the reduced D is the same as D,
* except that the components of the fixed variables are zero.
* DSQ will be set to the square of the length of XNEW-XOPT.
* CRVMIN is set to zero if D reaches the trust region boundary. Otherwise
* it is set to the least curvature of H that occurs in the conjugate
* gradient searches that are not restricted by any constraints. The
* value CRVMIN=-1.0D0 is set, however, if all of these searches are
* constrained.
* @param delta
* @param gnew
* @param xbdi
* @param s
* @param hs
* @param hred
* @return { dsq, crvmin }
*/
private double[] trsbox(
double delta,
ArrayRealVector gnew,
ArrayRealVector xbdi,
ArrayRealVector s,
ArrayRealVector hs,
ArrayRealVector hred
) {
printMethod(); // XXX
final int n = currentBest.getDimension();
final int npt = numberOfInterpolationPoints;
double dsq = Double.NaN;
double crvmin = Double.NaN;
// Local variables
double ds;
int iu;
double dhd, dhs, cth, shs, sth, ssq, beta=0, sdec, blen;
int iact = -1;
int nact = 0;
double angt = 0, qred;
int isav;
double temp = 0, xsav = 0, xsum = 0, angbd = 0, dredg = 0, sredg = 0;
int iterc;
double resid = 0, delsq = 0, ggsav = 0, tempa = 0, tempb = 0,
redmax = 0, dredsq = 0, redsav = 0, gredsq = 0, rednew = 0;
int itcsav = 0;
double rdprev = 0, rdnext = 0, stplen = 0, stepsq = 0;
int itermax = 0;
// Set some constants.
// Function Body
// The sign of GOPT(I) gives the sign of the change to the I-th variable
// that will reduce Q from its value at XOPT. Thus xbdi.get((I) shows whether
// or not to fix the I-th variable at one of its bounds initially, with
// NACT being set to the number of fixed variables. D and GNEW are also
// set for the first iteration. DELSQ is the upper bound on the sum of
// squares of the free variables. QRED is the reduction in Q so far.
iterc = 0;
nact = 0;
for (int i = 0; i < n; i++) {
xbdi.setEntry(i, ZERO);
if (trustRegionCenterOffset.getEntry(i) <= lowerDifference.getEntry(i)) {
if (gradientAtTrustRegionCenter.getEntry(i) >= ZERO) {
xbdi.setEntry(i, MINUS_ONE);
}
} else if (trustRegionCenterOffset.getEntry(i) >= upperDifference.getEntry(i) &&
gradientAtTrustRegionCenter.getEntry(i) <= ZERO) {
xbdi.setEntry(i, ONE);
}
if (xbdi.getEntry(i) != ZERO) {
++nact;
}
trialStepPoint.setEntry(i, ZERO);
gnew.setEntry(i, gradientAtTrustRegionCenter.getEntry(i));
}
delsq = delta * delta;
qred = ZERO;
crvmin = MINUS_ONE;
// Set the next search direction of the conjugate gradient method. It is
// the steepest descent direction initially and when the iterations are
// restarted because a variable has just been fixed by a bound, and of
// course the components of the fixed variables are zero. ITERMAX is an
// upper bound on the indices of the conjugate gradient iterations.
int state = 20;
for(;;) {
switch (state) {
case 20: {
printState(20); // XXX
beta = ZERO;
}
case 30: {
printState(30); // XXX
stepsq = ZERO;
for (int i = 0; i < n; i++) {
if (xbdi.getEntry(i) != ZERO) {
s.setEntry(i, ZERO);
} else if (beta == ZERO) {
s.setEntry(i, -gnew.getEntry(i));
} else {
s.setEntry(i, beta * s.getEntry(i) - gnew.getEntry(i));
}
// Computing 2nd power
final double d1 = s.getEntry(i);
stepsq += d1 * d1;
}
if (stepsq == ZERO) {
state = 190; break;
}
if (beta == ZERO) {
gredsq = stepsq;
itermax = iterc + n - nact;
}
if (gredsq * delsq <= qred * 1e-4 * qred) {
state = 190; break;
}
// Multiply the search direction by the second derivative matrix of Q and
// calculate some scalars for the choice of steplength. Then set BLEN to
// the length of the step to the trust region boundary and STPLEN to
// the steplength, ignoring the simple bounds.
state = 210; break;
}
case 50: {
printState(50); // XXX
resid = delsq;
ds = ZERO;
shs = ZERO;
for (int i = 0; i < n; i++) {
if (xbdi.getEntry(i) == ZERO) {
// Computing 2nd power
final double d1 = trialStepPoint.getEntry(i);
resid -= d1 * d1;
ds += s.getEntry(i) * trialStepPoint.getEntry(i);
shs += s.getEntry(i) * hs.getEntry(i);
}
}
if (resid <= ZERO) {
state = 90; break;
}
temp = JdkMath.sqrt(stepsq * resid + ds * ds);
if (ds < ZERO) {
blen = (temp - ds) / stepsq;
} else {
blen = resid / (temp + ds);
}
stplen = blen;
if (shs > ZERO) {
// Computing MIN
stplen = JdkMath.min(blen, gredsq / shs);
}
// Reduce STPLEN if necessary in order to preserve the simple bounds,
// letting IACT be the index of the new constrained variable.
iact = -1;
for (int i = 0; i < n; i++) {
if (s.getEntry(i) != ZERO) {
xsum = trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i);
if (s.getEntry(i) > ZERO) {
temp = (upperDifference.getEntry(i) - xsum) / s.getEntry(i);
} else {
temp = (lowerDifference.getEntry(i) - xsum) / s.getEntry(i);
}
if (temp < stplen) {
stplen = temp;
iact = i;
}
}
}
// Update CRVMIN, GNEW and D. Set SDEC to the decrease that occurs in Q.
sdec = ZERO;
if (stplen > ZERO) {
++iterc;
temp = shs / stepsq;
if (iact == -1 && temp > ZERO) {
crvmin = JdkMath.min(crvmin,temp);
if (crvmin == MINUS_ONE) {
crvmin = temp;
}
}
ggsav = gredsq;
gredsq = ZERO;
for (int i = 0; i < n; i++) {
gnew.setEntry(i, gnew.getEntry(i) + stplen * hs.getEntry(i));
if (xbdi.getEntry(i) == ZERO) {
// Computing 2nd power
final double d1 = gnew.getEntry(i);
gredsq += d1 * d1;
}
trialStepPoint.setEntry(i, trialStepPoint.getEntry(i) + stplen * s.getEntry(i));
}
// Computing MAX
final double d1 = stplen * (ggsav - HALF * stplen * shs);
sdec = JdkMath.max(d1, ZERO);
qred += sdec;
}
// Restart the conjugate gradient method if it has hit a new bound.
if (iact >= 0) {
++nact;
xbdi.setEntry(iact, ONE);
if (s.getEntry(iact) < ZERO) {
xbdi.setEntry(iact, MINUS_ONE);
}
// Computing 2nd power
final double d1 = trialStepPoint.getEntry(iact);
delsq -= d1 * d1;
if (delsq <= ZERO) {
state = 190; break;
}
state = 20; break;
}
// If STPLEN is less than BLEN, then either apply another conjugate
// gradient iteration or RETURN.
if (stplen < blen) {
if (iterc == itermax) {
state = 190; break;
}
if (sdec <= qred * .01) {
state = 190; break;
}
beta = gredsq / ggsav;
state = 30; break;
}
}
case 90: {
printState(90); // XXX
crvmin = ZERO;
// Prepare for the alternative iteration by calculating some scalars
// and by multiplying the reduced D by the second derivative matrix of
// Q, where S holds the reduced D in the call of GGMULT.
}
case 100: {
printState(100); // XXX
if (nact >= n - 1) {
state = 190; break;
}
dredsq = ZERO;
dredg = ZERO;
gredsq = ZERO;
for (int i = 0; i < n; i++) {
if (xbdi.getEntry(i) == ZERO) {
// Computing 2nd power
double d1 = trialStepPoint.getEntry(i);
dredsq += d1 * d1;
dredg += trialStepPoint.getEntry(i) * gnew.getEntry(i);
// Computing 2nd power
d1 = gnew.getEntry(i);
gredsq += d1 * d1;
s.setEntry(i, trialStepPoint.getEntry(i));
} else {
s.setEntry(i, ZERO);
}
}
itcsav = iterc;
state = 210; break;
// Let the search direction S be a linear combination of the reduced D
// and the reduced G that is orthogonal to the reduced D.
}
case 120: {
printState(120); // XXX
++iterc;
temp = gredsq * dredsq - dredg * dredg;
if (temp <= qred * 1e-4 * qred) {
state = 190; break;
}
temp = JdkMath.sqrt(temp);
for (int i = 0; i < n; i++) {
if (xbdi.getEntry(i) == ZERO) {
s.setEntry(i, (dredg * trialStepPoint.getEntry(i) - dredsq * gnew.getEntry(i)) / temp);
} else {
s.setEntry(i, ZERO);
}
}
sredg = -temp;
// By considering the simple bounds on the variables, calculate an upper
// bound on the tangent of half the angle of the alternative iteration,
// namely ANGBD, except that, if already a free variable has reached a
// bound, there is a branch back to label 100 after fixing that variable.
angbd = ONE;
iact = -1;
for (int i = 0; i < n; i++) {
if (xbdi.getEntry(i) == ZERO) {
tempa = trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i) - lowerDifference.getEntry(i);
tempb = upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i) - trialStepPoint.getEntry(i);
if (tempa <= ZERO) {
++nact;
xbdi.setEntry(i, MINUS_ONE);
state = 100; break;
} else if (tempb <= ZERO) {
++nact;
xbdi.setEntry(i, ONE);
state = 100; break;
}
// Computing 2nd power
double d1 = trialStepPoint.getEntry(i);
// Computing 2nd power
double d2 = s.getEntry(i);
ssq = d1 * d1 + d2 * d2;
// Computing 2nd power
d1 = trustRegionCenterOffset.getEntry(i) - lowerDifference.getEntry(i);
temp = ssq - d1 * d1;
if (temp > ZERO) {
temp = JdkMath.sqrt(temp) - s.getEntry(i);
if (angbd * temp > tempa) {
angbd = tempa / temp;
iact = i;
xsav = MINUS_ONE;
}
}
// Computing 2nd power
d1 = upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i);
temp = ssq - d1 * d1;
if (temp > ZERO) {
temp = JdkMath.sqrt(temp) + s.getEntry(i);
if (angbd * temp > tempb) {
angbd = tempb / temp;
iact = i;
xsav = ONE;
}
}
}
}
// Calculate HHD and some curvatures for the alternative iteration.
state = 210; break;
}
case 150: {
printState(150); // XXX
shs = ZERO;
dhs = ZERO;
dhd = ZERO;
for (int i = 0; i < n; i++) {
if (xbdi.getEntry(i) == ZERO) {
shs += s.getEntry(i) * hs.getEntry(i);
dhs += trialStepPoint.getEntry(i) * hs.getEntry(i);
dhd += trialStepPoint.getEntry(i) * hred.getEntry(i);
}
}
// Seek the greatest reduction in Q for a range of equally spaced values
// of ANGT in [0,ANGBD], where ANGT is the tangent of half the angle of
// the alternative iteration.
redmax = ZERO;
isav = -1;
redsav = ZERO;
iu = (int) (angbd * 17. + 3.1);
for (int i = 0; i < iu; i++) {
angt = angbd * i / iu;
sth = (angt + angt) / (ONE + angt * angt);
temp = shs + angt * (angt * dhd - dhs - dhs);
rednew = sth * (angt * dredg - sredg - HALF * sth * temp);
if (rednew > redmax) {
redmax = rednew;
isav = i;
rdprev = redsav;
} else if (i == isav + 1) {
rdnext = rednew;
}
redsav = rednew;
}
// Return if the reduction is zero. Otherwise, set the sine and cosine
// of the angle of the alternative iteration, and calculate SDEC.
if (isav < 0) {
state = 190; break;
}
if (isav < iu) {
temp = (rdnext - rdprev) / (redmax + redmax - rdprev - rdnext);
angt = angbd * (isav + HALF * temp) / iu;
}
cth = (ONE - angt * angt) / (ONE + angt * angt);
sth = (angt + angt) / (ONE + angt * angt);
temp = shs + angt * (angt * dhd - dhs - dhs);
sdec = sth * (angt * dredg - sredg - HALF * sth * temp);
if (sdec <= ZERO) {
state = 190; break;
}
// Update GNEW, D and HRED. If the angle of the alternative iteration
// is restricted by a bound on a free variable, that variable is fixed
// at the bound.
dredg = ZERO;
gredsq = ZERO;
for (int i = 0; i < n; i++) {
gnew.setEntry(i, gnew.getEntry(i) + (cth - ONE) * hred.getEntry(i) + sth * hs.getEntry(i));
if (xbdi.getEntry(i) == ZERO) {
trialStepPoint.setEntry(i, cth * trialStepPoint.getEntry(i) + sth * s.getEntry(i));
dredg += trialStepPoint.getEntry(i) * gnew.getEntry(i);
// Computing 2nd power
final double d1 = gnew.getEntry(i);
gredsq += d1 * d1;
}
hred.setEntry(i, cth * hred.getEntry(i) + sth * hs.getEntry(i));
}
qred += sdec;
if (iact >= 0 && isav == iu) {
++nact;
xbdi.setEntry(iact, xsav);
state = 100; break;
}
// If SDEC is sufficiently small, then RETURN after setting XNEW to
// XOPT+D, giving careful attention to the bounds.
if (sdec > qred * .01) {
state = 120; break;
}
}
case 190: {
printState(190); // XXX
dsq = ZERO;
for (int i = 0; i < n; i++) {
// Computing MAX
// Computing MIN
final double min = JdkMath.min(trustRegionCenterOffset.getEntry(i) + trialStepPoint.getEntry(i),
upperDifference.getEntry(i));
newPoint.setEntry(i, JdkMath.max(min, lowerDifference.getEntry(i)));
if (xbdi.getEntry(i) == MINUS_ONE) {
newPoint.setEntry(i, lowerDifference.getEntry(i));
}
if (xbdi.getEntry(i) == ONE) {
newPoint.setEntry(i, upperDifference.getEntry(i));
}
trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
// Computing 2nd power
final double d1 = trialStepPoint.getEntry(i);
dsq += d1 * d1;
}
return new double[] { dsq, crvmin };
// The following instructions multiply the current S-vector by the second
// derivative matrix of the quadratic model, putting the product in HS.
// They are reached from three different parts of the software above and
// they can be regarded as an external subroutine.
}
case 210: {
printState(210); // XXX
int ih = 0;
for (int j = 0; j < n; j++) {
hs.setEntry(j, ZERO);
for (int i = 0; i <= j; i++) {
if (i < j) {
hs.setEntry(j, hs.getEntry(j) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(i));
}
hs.setEntry(i, hs.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(j));
ih++;
}
}
final RealVector tmp = interpolationPoints.operate(s).ebeMultiply(modelSecondDerivativesParameters);
for (int k = 0; k < npt; k++) {
if (modelSecondDerivativesParameters.getEntry(k) != ZERO) {
for (int i = 0; i < n; i++) {
hs.setEntry(i, hs.getEntry(i) + tmp.getEntry(k) * interpolationPoints.getEntry(k, i));
}
}
}
if (crvmin != ZERO) {
state = 50; break;
}
if (iterc > itcsav) {
state = 150; break;
}
for (int i = 0; i < n; i++) {
hred.setEntry(i, hs.getEntry(i));
}
state = 120; break;
}
default: {
throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "trsbox");
}}
}
} // trsbox
// ----------------------------------------------------------------------------------------
/**
* The arrays BMAT and ZMAT are updated, as required by the new position
* of the interpolation point that has the index KNEW. The vector VLAG has
* N+NPT components, set on entry to the first NPT and last N components
* of the product Hw in equation (4.11) of the Powell (2006) paper on
* NEWUOA. Further, BETA is set on entry to the value of the parameter
* with that name, and DENOM is set to the denominator of the updating
* formula. Elements of ZMAT may be treated as zero if their moduli are
* at most ZTEST. The first NDIM elements of W are used for working space.
* @param beta
* @param denom
* @param knew
*/
private void update(
double beta,
double denom,
int knew
) {
printMethod(); // XXX
final int n = currentBest.getDimension();
final int npt = numberOfInterpolationPoints;
final int nptm = npt - n - 1;
// XXX Should probably be split into two arrays.
final ArrayRealVector work = new ArrayRealVector(npt + n);
double ztest = ZERO;
for (int k = 0; k < npt; k++) {
for (int j = 0; j < nptm; j++) {
// Computing MAX
ztest = JdkMath.max(ztest, JdkMath.abs(zMatrix.getEntry(k, j)));
}
}
ztest *= 1e-20;
// Apply the rotations that put zeros in the KNEW-th row of ZMAT.
for (int j = 1; j < nptm; j++) {
final double d1 = zMatrix.getEntry(knew, j);
if (JdkMath.abs(d1) > ztest) {
// Computing 2nd power
final double d2 = zMatrix.getEntry(knew, 0);
// Computing 2nd power
final double d3 = zMatrix.getEntry(knew, j);
final double d4 = JdkMath.sqrt(d2 * d2 + d3 * d3);
final double d5 = zMatrix.getEntry(knew, 0) / d4;
final double d6 = zMatrix.getEntry(knew, j) / d4;
for (int i = 0; i < npt; i++) {
final double d7 = d5 * zMatrix.getEntry(i, 0) + d6 * zMatrix.getEntry(i, j);
zMatrix.setEntry(i, j, d5 * zMatrix.getEntry(i, j) - d6 * zMatrix.getEntry(i, 0));
zMatrix.setEntry(i, 0, d7);
}
}
zMatrix.setEntry(knew, j, ZERO);
}
// Put the first NPT components of the KNEW-th column of HLAG into W,
// and calculate the parameters of the updating formula.
for (int i = 0; i < npt; i++) {
work.setEntry(i, zMatrix.getEntry(knew, 0) * zMatrix.getEntry(i, 0));
}
final double alpha = work.getEntry(knew);
final double tau = lagrangeValuesAtNewPoint.getEntry(knew);
lagrangeValuesAtNewPoint.setEntry(knew, lagrangeValuesAtNewPoint.getEntry(knew) - ONE);
// Complete the updating of ZMAT.
final double sqrtDenom = JdkMath.sqrt(denom);
final double d1 = tau / sqrtDenom;
final double d2 = zMatrix.getEntry(knew, 0) / sqrtDenom;
for (int i = 0; i < npt; i++) {
zMatrix.setEntry(i, 0,
d1 * zMatrix.getEntry(i, 0) - d2 * lagrangeValuesAtNewPoint.getEntry(i));
}
// Finally, update the matrix BMAT.
for (int j = 0; j < n; j++) {
final int jp = npt + j;
work.setEntry(jp, bMatrix.getEntry(knew, j));
final double d3 = (alpha * lagrangeValuesAtNewPoint.getEntry(jp) - tau * work.getEntry(jp)) / denom;
final double d4 = (-beta * work.getEntry(jp) - tau * lagrangeValuesAtNewPoint.getEntry(jp)) / denom;
for (int i = 0; i <= jp; i++) {
bMatrix.setEntry(i, j,
bMatrix.getEntry(i, j) + d3 * lagrangeValuesAtNewPoint.getEntry(i) + d4 * work.getEntry(i));
if (i >= npt) {
bMatrix.setEntry(jp, (i - npt), bMatrix.getEntry(i, j));
}
}
}
} // update
/**
* Performs validity checks.
*
* @param lowerBound Lower bounds (constraints) of the objective variables.
* @param upperBound Upperer bounds (constraints) of the objective variables.
*/
private void setup(double[] lowerBound,
double[] upperBound) {
printMethod(); // XXX
double[] init = getStartPoint();
final int dimension = init.length;
// Check problem dimension.
if (dimension < MINIMUM_PROBLEM_DIMENSION) {
throw new NumberIsTooSmallException(dimension, MINIMUM_PROBLEM_DIMENSION, true);
}
// Check number of interpolation points.
final int[] nPointsInterval = { dimension + 2, (dimension + 2) * (dimension + 1) / 2 };
if (numberOfInterpolationPoints < nPointsInterval[0] ||
numberOfInterpolationPoints > nPointsInterval[1]) {
throw new OutOfRangeException(LocalizedFormats.NUMBER_OF_INTERPOLATION_POINTS,
numberOfInterpolationPoints,
nPointsInterval[0],
nPointsInterval[1]);
}
// Initialize bound differences.
boundDifference = new double[dimension];
double requiredMinDiff = 2 * initialTrustRegionRadius;
double minDiff = Double.POSITIVE_INFINITY;
for (int i = 0; i < dimension; i++) {
boundDifference[i] = upperBound[i] - lowerBound[i];
minDiff = JdkMath.min(minDiff, boundDifference[i]);
}
if (minDiff < requiredMinDiff) {
initialTrustRegionRadius = minDiff / 3.0;
}
// Initialize the data structures used by the "bobyqa" method.
bMatrix = new Array2DRowRealMatrix(dimension + numberOfInterpolationPoints,
dimension);
zMatrix = new Array2DRowRealMatrix(numberOfInterpolationPoints,
numberOfInterpolationPoints - dimension - 1);
interpolationPoints = new Array2DRowRealMatrix(numberOfInterpolationPoints,
dimension);
originShift = new ArrayRealVector(dimension);
fAtInterpolationPoints = new ArrayRealVector(numberOfInterpolationPoints);
trustRegionCenterOffset = new ArrayRealVector(dimension);
gradientAtTrustRegionCenter = new ArrayRealVector(dimension);
lowerDifference = new ArrayRealVector(dimension);
upperDifference = new ArrayRealVector(dimension);
modelSecondDerivativesParameters = new ArrayRealVector(numberOfInterpolationPoints);
newPoint = new ArrayRealVector(dimension);
alternativeNewPoint = new ArrayRealVector(dimension);
trialStepPoint = new ArrayRealVector(dimension);
lagrangeValuesAtNewPoint = new ArrayRealVector(dimension + numberOfInterpolationPoints);
modelSecondDerivativesValues = new ArrayRealVector(dimension * (dimension + 1) / 2);
}
// XXX utility for figuring out call sequence.
private static String caller(int n) {
final Throwable t = new Throwable();
final StackTraceElement[] elements = t.getStackTrace();
final StackTraceElement e = elements[n];
return e.getMethodName() + " (at line " + e.getLineNumber() + ")";
}
// XXX utility for figuring out call sequence.
private static void printState(int s) {
// System.out.println(caller(2) + ": state " + s);
}
// XXX utility for figuring out call sequence.
private static void printMethod() {
// System.out.println(caller(2));
}
/**
* Marker for code paths that are not explored with the current unit tests.
* If the path becomes explored, it should just be removed from the code.
*/
private static final class PathIsExploredException extends RuntimeException {
/** Serializable UID. */
private static final long serialVersionUID = 745350979634801853L;
/** Message string. */
private static final String PATH_IS_EXPLORED
= "If this exception is thrown, just remove it from the code";
PathIsExploredException() {
super(PATH_IS_EXPLORED + " " + BOBYQAOptimizer.caller(3));
}
}
}
//CHECKSTYLE: resume all