QuasiSigmoidDecayFunction.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.neuralnet.sofm.util;
import java.util.function.DoubleUnaryOperator;
import java.util.function.LongToDoubleFunction;
import org.apache.commons.math4.neuralnet.internal.NeuralNetException;
/**
* Decay function whose shape is similar to a sigmoid.
* <br>
* Class is immutable.
*
* @since 3.3
*/
public class QuasiSigmoidDecayFunction implements LongToDoubleFunction {
/** Sigmoid. */
private final DoubleUnaryOperator sigmoid;
/** See {@link #value(long)}. */
private final double scale;
/**
* Creates an instance.
* The function {@code f} will have the following properties:
* <ul>
* <li>{@code f(0) = initValue}</li>
* <li>{@code numCall} is the inflexion point</li>
* <li>{@code slope = f'(numCall)}</li>
* </ul>
*
* @param initValue Initial value, i.e. {@link #applyAsDouble(long) applyAsDouble(0)}.
* @param slope Value of the function derivative at {@code numCall}.
* @param numCall Inflexion point.
* @throws IllegalArgumentException if {@code initValue <= 0},
* {@code slope >= 0} or {@code numCall <= 0}.
*/
public QuasiSigmoidDecayFunction(double initValue,
double slope,
long numCall) {
if (initValue <= 0) {
throw new NeuralNetException(NeuralNetException.NOT_STRICTLY_POSITIVE, initValue);
}
if (slope >= 0) {
throw new NeuralNetException(NeuralNetException.TOO_LARGE, slope, 0);
}
if (numCall <= 1) {
throw new NeuralNetException(NeuralNetException.TOO_SMALL, numCall, 1);
}
final double k = initValue;
final double m = numCall;
final double b = 4 * slope / initValue;
sigmoid = x -> k / (1 + Math.exp(b * (m - x)));
final double y0 = sigmoid.applyAsDouble(0d);
scale = k / y0;
}
/**
* Computes the value of the learning factor.
*
* @param numCall Current step of the training task.
* @return the value of the function at {@code numCall}.
*/
@Override
public double applyAsDouble(long numCall) {
return scale * sigmoid.applyAsDouble((double) numCall);
}
}