MapRanking.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.neuralnet;
import java.util.List;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import org.apache.commons.math4.neuralnet.internal.NeuralNetException;
/**
* Utility for ranking the units (neurons) of a network.
*
* @since 4.0
*/
public class MapRanking {
/** List corresponding to the map passed to the constructor. */
private final List<Neuron> map = new ArrayList<>();
/** Distance function for sorting. */
private final DistanceMeasure distance;
/**
* @param neurons List to be ranked.
* No defensive copy is performed.
* The {@link #rank(double[],int) created list of units} will
* be sorted in increasing order of the {@code distance}.
* @param distance Distance function.
*/
public MapRanking(Iterable<Neuron> neurons,
DistanceMeasure distance) {
this.distance = distance;
for (final Neuron n : neurons) {
map.add(n); // No defensive copy.
}
}
/**
* Creates a list of the neurons whose features best correspond to the
* given {@code features}.
*
* @param features Data.
* @return the list of neurons sorted in decreasing order of distance to
* the given data.
* @throws IllegalArgumentException if the size of the input is not
* compatible with the neurons features size.
*/
public List<Neuron> rank(double[] features) {
return rank(features, map.size());
}
/**
* Creates a list of the neurons whose features best correspond to the
* given {@code features}.
*
* @param features Data.
* @param max Maximum size of the returned list.
* @return the list of neurons sorted in decreasing order of distance to
* the given data.
* @throws IllegalArgumentException if the size of the input is not
* compatible with the neurons features size or {@code max <= 0}.
*/
public List<Neuron> rank(double[] features,
int max) {
if (max <= 0) {
throw new NeuralNetException(NeuralNetException.NOT_STRICTLY_POSITIVE, max);
}
final int m = max <= map.size() ?
max :
map.size();
final List<PairNeuronDouble> list = new ArrayList<>(m);
for (final Neuron n : map) {
final double d = distance.applyAsDouble(n.getFeatures(), features);
final PairNeuronDouble p = new PairNeuronDouble(n, d);
if (list.size() < m) {
list.add(p);
if (list.size() > 1) {
// Sort if there is more than 1 element.
Collections.sort(list, PairNeuronDouble.COMPARATOR);
}
} else {
final int last = list.size() - 1;
if (PairNeuronDouble.COMPARATOR.compare(p, list.get(last)) < 0) {
list.set(last, p); // Replace worst entry.
if (last > 0) {
// Sort if there is more than 1 element.
Collections.sort(list, PairNeuronDouble.COMPARATOR);
}
}
}
}
final List<Neuron> result = new ArrayList<>(m);
for (final PairNeuronDouble p : list) {
result.add(p.getNeuron());
}
return result;
}
/**
* Helper data structure holding a (Neuron, double) pair.
*/
private static class PairNeuronDouble {
/** Comparator. */
static final Comparator<PairNeuronDouble> COMPARATOR
= new Comparator<PairNeuronDouble>() {
/** {@inheritDoc} */
@Override
public int compare(PairNeuronDouble o1,
PairNeuronDouble o2) {
return Double.compare(o1.value, o2.value);
}
};
/** Key. */
private final Neuron neuron;
/** Value. */
private final double value;
/**
* @param neuron Neuron.
* @param value Value.
*/
PairNeuronDouble(Neuron neuron, double value) {
this.neuron = neuron;
this.value = value;
}
/** @return the neuron. */
public Neuron getNeuron() {
return neuron;
}
}
}