MapUtils.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.neuralnet;
import java.util.List;
import org.apache.commons.math4.neuralnet.internal.NeuralNetException;
/**
* Utilities for network maps.
*
* @since 3.3
*/
public final class MapUtils {
/**
* Class contains only static methods.
*/
private MapUtils() {}
/**
* Computes the quantization error.
* The quantization error is the average distance between a feature vector
* and its "best matching unit" (closest neuron).
*
* @param data Feature vectors.
* @param neurons List of neurons to scan.
* @param distance Distance function.
* @return the error.
* @throws IllegalArgumentException if {@code data} is empty.
*/
public static double computeQuantizationError(Iterable<double[]> data,
Iterable<Neuron> neurons,
DistanceMeasure distance) {
final MapRanking rank = new MapRanking(neurons, distance);
double d = 0;
int count = 0;
for (final double[] f : data) {
++count;
d += distance.applyAsDouble(f, rank.rank(f, 1).get(0).getFeatures());
}
if (count == 0) {
throw new NeuralNetException(NeuralNetException.NO_DATA);
}
return d / count;
}
/**
* Computes the topographic error.
* The topographic error is the proportion of data for which first and
* second best matching units are not adjacent in the map.
*
* @param data Feature vectors.
* @param net Network.
* @param distance Distance function.
* @return the error.
* @throws IllegalArgumentException if {@code data} is empty.
*/
public static double computeTopographicError(Iterable<double[]> data,
Network net,
DistanceMeasure distance) {
final MapRanking rank = new MapRanking(net, distance);
int notAdjacentCount = 0;
int count = 0;
for (final double[] f : data) {
++count;
final List<Neuron> p = rank.rank(f, 2);
if (!net.getNeighbours(p.get(0)).contains(p.get(1))) {
// Increment count if first and second best matching units
// are not neighbours.
++notAdjacentCount;
}
}
if (count == 0) {
throw new NeuralNetException(NeuralNetException.NO_DATA);
}
return ((double) notAdjacentCount) / count;
}
}