TransformUtils.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.transform;
import java.util.function.DoubleUnaryOperator;
import org.apache.commons.numbers.complex.Complex;
/**
* Useful functions for the implementation of various transforms.
* Class is package-private (for internal use only).
*/
final class TransformUtils {
/** Number of array slots: 1 for "real" parts 1 for "imaginary" parts. */
private static final int NUM_PARTS = 2;
/** Utility class. */
private TransformUtils() {}
/**
* Multiply every component in the given real array by the
* given real number. The change is made in place.
*
* @param f Array to be scaled.
* @param d Scaling coefficient.
* @return a reference to the scaled array.
*/
static double[] scaleInPlace(double[] f, double d) {
for (int i = 0; i < f.length; i++) {
f[i] *= d;
}
return f;
}
/**
* Multiply every component in the given complex array by the
* given real number. The change is made in place.
*
* @param f Array to be scaled.
* @param d Scaling coefficient.
* @return the scaled array.
*/
static Complex[] scaleInPlace(Complex[] f, double d) {
for (int i = 0; i < f.length; i++) {
f[i] = Complex.ofCartesian(d * f[i].getReal(), d * f[i].getImaginary());
}
return f;
}
/**
* Builds a new two dimensional array of {@code double} filled with the real
* and imaginary parts of the specified {@link Complex} numbers. In the
* returned array {@code dataRI}, the data is laid out as follows
* <ul>
* <li>{@code dataRI[0][i] = dataC[i].getReal()},</li>
* <li>{@code dataRI[1][i] = dataC[i].getImaginary()}.</li>
* </ul>
*
* @param dataC Array of {@link Complex} data to be transformed.
* @return a two dimensional array filled with the real and imaginary parts
* of the specified complex input.
*/
static double[][] createRealImaginary(final Complex[] dataC) {
final double[][] dataRI = new double[2][dataC.length];
final double[] dataR = dataRI[0];
final double[] dataI = dataRI[1];
for (int i = 0; i < dataC.length; i++) {
final Complex c = dataC[i];
dataR[i] = c.getReal();
dataI[i] = c.getImaginary();
}
return dataRI;
}
/**
* Builds a new array of {@link Complex} from the specified two dimensional
* array of real and imaginary parts. In the returned array {@code dataC},
* the data is laid out as follows
* <ul>
* <li>{@code dataC[i].getReal() = dataRI[0][i]},</li>
* <li>{@code dataC[i].getImaginary() = dataRI[1][i]}.</li>
* </ul>
*
* @param dataRI Array of real and imaginary parts to be transformed.
* @return a {@link Complex} array.
* @throws IllegalArgumentException if the number of rows of the specified
* array is not two, or the array is not rectangular.
*/
static Complex[] createComplex(final double[][] dataRI) {
if (dataRI.length != NUM_PARTS) {
throw new TransformException(TransformException.SIZE_MISMATCH,
dataRI.length, NUM_PARTS);
}
final double[] dataR = dataRI[0];
final double[] dataI = dataRI[1];
if (dataR.length != dataI.length) {
throw new TransformException(TransformException.SIZE_MISMATCH,
dataI.length, dataR.length);
}
final int n = dataR.length;
final Complex[] c = new Complex[n];
for (int i = 0; i < n; i++) {
c[i] = Complex.ofCartesian(dataR[i], dataI[i]);
}
return c;
}
/**
* Samples the specified univariate real function on the specified interval.
* <p>
* The interval is divided equally into {@code n} sections and sample points
* are taken from {@code min} to {@code max - (max - min) / n}; therefore
* {@code f} is not sampled at the upper bound {@code max}.</p>
*
* @param f Function to be sampled
* @param min Lower bound of the interval (included).
* @param max Upper bound of the interval (excluded).
* @param n Number of sample points.
* @return the array of samples.
* @throws IllegalArgumentException if the lower bound {@code min} is
* greater than, or equal to the upper bound {@code max}, if the number
* of sample points {@code n} is negative.
*/
static double[] sample(DoubleUnaryOperator f,
double min,
double max,
int n) {
if (n <= 0) {
throw new TransformException(TransformException.NOT_STRICTLY_POSITIVE,
Integer.valueOf(n));
}
if (min >= max) {
throw new TransformException(TransformException.TOO_LARGE, min, max);
}
final double[] s = new double[n];
final double h = (max - min) / n;
for (int i = 0; i < n; i++) {
s[i] = f.applyAsDouble(min + i * h);
}
return s;
}
}