BinomialCoefficient.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.numbers.combinatorics;
import org.apache.commons.numbers.core.ArithmeticUtils;
/**
* Representation of the <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">
* binomial coefficient</a>.
* It is "{@code n choose k}", the number of {@code k}-element subsets that
* can be selected from an {@code n}-element set.
*/
public final class BinomialCoefficient {
/** The maximum m that can be computed without overflow of a long.
* {@code C(68, 34) > 2^63}. */
private static final int MAX_M = 33;
/** The maximum n that can be computed without intermediate overflow for any m.
* {@code C(61, 30) * 30 < 2^63}. */
private static final int SMALL_N = 61;
/** The maximum n that can be computed without overflow of a long for any m.
* {@code C(66, 33) < 2^63}. */
private static final int LIMIT_N = 66;
/** Private constructor. */
private BinomialCoefficient() {
// intentionally empty.
}
/**
* Computes the binomial coefficient.
*
* <p>The largest value of {@code n} for which <em>all</em> coefficients can
* fit into a {@code long} is 66. Larger {@code n} may result in an
* {@link ArithmeticException} depending on the value of {@code k}.
*
* <p>Any {@code min(k, n - k) >= 34} cannot fit into a {@code long}
* and will result in an {@link ArithmeticException}.
*
* @param n Size of the set.
* @param k Size of the subsets to be counted.
* @return {@code n choose k}.
* @throws IllegalArgumentException if {@code n < 0}, {@code k < 0} or {@code k > n}.
* @throws ArithmeticException if the result is too large to be
* represented by a {@code long}.
*/
public static long value(int n, int k) {
final int m = checkBinomial(n, k);
if (m == 0) {
return 1;
}
if (m == 1) {
return n;
}
// We use the formulae:
// (n choose m) = n! / (n-m)! / m!
// (n choose m) = ((n-m+1)*...*n) / (1*...*m)
// which can be written
// (n choose m) = (n-1 choose m-1) * n / m
long result = 1;
if (n <= SMALL_N) {
// For n <= 61, the naive implementation cannot overflow.
int i = n - m + 1;
for (int j = 1; j <= m; j++) {
result = result * i / j;
i++;
}
} else if (n <= LIMIT_N) {
// For n > 61 but n <= 66, the result cannot overflow,
// but we must take care not to overflow intermediate values.
int i = n - m + 1;
for (int j = 1; j <= m; j++) {
// We know that (result * i) is divisible by j,
// but (result * i) may overflow, so we split j:
// Filter out the gcd, d, so j/d and i/d are integer.
// result is divisible by (j/d) because (j/d)
// is relative prime to (i/d) and is a divisor of
// result * (i/d).
final long d = ArithmeticUtils.gcd(i, j);
result = (result / (j / d)) * (i / d);
++i;
}
} else {
if (m > MAX_M) {
throw new ArithmeticException(n + " choose " + k);
}
// For n > 66, a result overflow might occur, so we check
// the multiplication, taking care to not overflow
// unnecessary.
int i = n - m + 1;
for (int j = 1; j <= m; j++) {
final long d = ArithmeticUtils.gcd(i, j);
result = Math.multiplyExact(result / (j / d), i / d);
++i;
}
}
return result;
}
/**
* Check binomial preconditions.
*
* <p>For convenience in implementations this returns the smaller of
* {@code k} or {@code n - k} allowing symmetry to be exploited in
* computing the binomial coefficient.
*
* @param n Size of the set.
* @param k Size of the subsets to be counted.
* @return min(k, n - k)
* @throws IllegalArgumentException if {@code n < 0}.
* @throws IllegalArgumentException if {@code k > n} or {@code k < 0}.
*/
static int checkBinomial(int n,
int k) {
// Combine all checks with a single branch:
// 0 <= n; 0 <= k <= n
// Note: If n >= 0 && k >= 0 && n - k < 0 then k > n.
final int m = n - k;
// Bitwise or will detect a negative sign bit in any of the numbers
if ((n | k | m) < 0) {
// Raise the correct exception
if (n < 0) {
throw new CombinatoricsException(CombinatoricsException.NEGATIVE, n);
}
throw new CombinatoricsException(CombinatoricsException.OUT_OF_RANGE, k, 0, n);
}
return m < k ? m : k;
}
}