SmallPrimes.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.numbers.primes;

import java.math.BigInteger;
import java.util.AbstractMap.SimpleImmutableEntry;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Map.Entry;
import java.util.Set;

/**
 * Utility methods to work on primes within the <code>int</code> range.
 */
final class SmallPrimes {
    /**
     * The first 512 prime numbers.
     * <p>
     * It contains all primes smaller or equal to the cubic square of Integer.MAX_VALUE.
     * As a result, <code>int</code> numbers which are not reduced by those primes are guaranteed
     * to be either prime or semi prime.
     */
    static final int[] PRIMES = {
        2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,
        109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
        233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
        367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
        499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
        643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787,
        797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941,
        947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069,
        1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213,
        1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321,
        1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481,
        1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601,
        1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733,
        1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877,
        1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017,
        2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143,
        2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297,
        2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423,
        2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593,
        2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713,
        2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851,
        2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011,
        3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181,
        3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323,
        3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467,
        3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607,
        3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671};

    /** The last number in {@link #PRIMES}. */
    static final int PRIMES_LAST = PRIMES[PRIMES.length - 1];

    /**
     * A set of prime numbers mapped to an array of all integers between
     * 0 (inclusive) and the least common multiple, i.e. the product, of those
     * prime numbers (exclusive) that are not divisible by any of these prime
     * numbers. The prime numbers in the set are among the first 512 prime
     * numbers, and the {@code int} array containing the numbers undivisible by
     * these prime numbers is sorted in ascending order.
     *
     * <p>The purpose of this field is to speed up trial division by skipping
     * multiples of individual prime numbers, specifically those contained
     * in the key of this {@code Entry}, by only trying integers that are equivalent
     * to one of the integers contained in the value of this {@code Entry} modulo
     * the least common multiple of the prime numbers in the set.</p>
     *
     * <p>Note that, if {@code product} is the product of the prime numbers,
     * the last number in the array of coprime integers is necessarily
     * {@code product - 1}, because if {@code product ≡ 0 mod p}, then
     * {@code product - 1 ≡ -1 mod p}, and {@code 0 ≢ -1 mod p} for any prime number p.</p>
     */
    static final Entry<Set<Integer>, int[]> PRIME_NUMBERS_AND_COPRIME_EQUIVALENCE_CLASSES;

    static {
        /*
        According to the Chinese Remainder Theorem, for every combination of
        congruence classes modulo distinct, pairwise coprime moduli, there
        exists exactly one congruence class modulo the product of these
        moduli that is contained in every one of the former congruence
        classes. Since the number of congruence classes coprime to a prime
        number p is p-1, the number of congruence classes coprime to all
        prime numbers p_1, p_2, p_3 … is (p_1 - 1) * (p_2 - 1) * (p_3 - 1) …

        Therefore, when using the first five prime numbers as those whose multiples
        are to be skipped in trial division, the array containing the coprime
        equivalence classes will have to hold (2-1)*(3-1)*(5-1)*(7-1)*(11-1) = 480
        values. As a consequence, the amount of integers to be tried in
        trial division is reduced to 480/(2*3*5*7*11), which is about 20.78%,
        of all integers.
         */
        final Set<Integer> primeNumbers = new HashSet<>();
        primeNumbers.add(2);
        primeNumbers.add(3);
        primeNumbers.add(5);
        primeNumbers.add(7);
        primeNumbers.add(11);

        final int product = primeNumbers.stream().reduce(1, (a, b) -> a * b);
        final int[] equivalenceClasses = new int[primeNumbers.stream().mapToInt(a -> a - 1).reduce(1, (a, b) -> a * b)];

        int equivalenceClassIndex = 0;
        for (int i = 0; i < product; i++) {
            boolean foundPrimeFactor = false;
            for (final Integer prime : primeNumbers) {
                if (i % prime == 0) {
                    foundPrimeFactor = true;
                    break;
                }
            }
            if (!foundPrimeFactor) {
                equivalenceClasses[equivalenceClassIndex] = i;
                equivalenceClassIndex++;
            }
        }

        PRIME_NUMBERS_AND_COPRIME_EQUIVALENCE_CLASSES = new SimpleImmutableEntry<>(primeNumbers, equivalenceClasses);
    }

    /**
     * Utility class.
     */
    private SmallPrimes() {}

    /**
     * Extract small factors.
     *
     * @param n Number to factor, must be &gt; 0.
     * @param factors List where to add the factors.
     * @return the part of {@code n} which remains to be factored, it is either
     * a prime or a semi-prime.
     */
    static int smallTrialDivision(int n,
                                  final List<Integer> factors) {
        for (final int p : PRIMES) {
            while (0 == n % p) {
                n /= p;
                factors.add(p);
            }
        }
        return n;
    }

    /**
     * Extract factors between {@code PRIME_LAST + 2} and {@code maxFactors}.
     *
     * @param n Number to factorize, must be larger than {@code PRIME_LAST + 2}
     * and must not contain any factor below {@code PRIME_LAST + 2}.
     * @param maxFactor Upper bound of trial division: if it is reached, the
     * method gives up and returns {@code n}.
     * @param factors the list where to add the factors.
     */
    static void boundedTrialDivision(int n,
                                     int maxFactor,
                                     List<Integer> factors) {
        final int minFactor = PRIMES_LAST + 2;

        /*
        only trying integers of the form k*m + c, where k >= 0, m is the
        product of some prime numbers which n is required not to contain
        as prime factors, and c is an integer undivisible by all of those
        prime numbers; in other words, skipping multiples of these primes
         */
        final int[] a = PRIME_NUMBERS_AND_COPRIME_EQUIVALENCE_CLASSES.getValue();
        final int m = a[a.length - 1] + 1;
        int km = m * (minFactor / m);
        int currentEquivalenceClassIndex = Arrays.binarySearch(a, minFactor % m);

        /*
        Since minFactor is the next smallest prime number after the
        first 512 primes, it cannot be a multiple of one of them, therefore,
        the index returned by the above binary search must be non-negative.
         */

        boolean done = false;
        while (!done) {
            // no check is done about n >= f
            final int f = km + a[currentEquivalenceClassIndex];
            if (f > maxFactor) {
                done = true;
            } else if (0 == n % f) {
                n /= f;
                factors.add(f);
                done = true;
            } else {
                if (currentEquivalenceClassIndex == a.length - 1) {
                    km += m;
                    currentEquivalenceClassIndex = 0;
                } else {
                    currentEquivalenceClassIndex++;
                }
            }
        }
        // Note: When this method is used after the small trial division n != 1
        // for all n in [2, MAX_VALUE] (tested using an exhaustive enumeration).
        factors.add(n);
    }

    /**
     * Factorization by trial division.
     *
     * @param n Number to factor.
     * @return the list of prime factors of {@code n}.
     */
    static List<Integer> trialDivision(int n) {
        final List<Integer> factors = new ArrayList<>(32);
        n = smallTrialDivision(n, factors);
        if (1 == n) {
            return factors;
        }
        // here we are sure that n is either a prime or a semi prime
        final int bound = (int) Math.sqrt(n);
        boundedTrialDivision(n, bound, factors);
        return factors;
    }

    /**
     * Miller-Rabin probabilistic primality test for int type, used in such
     * a way that a result is always guaranteed.
     * <p>
     * It uses the prime numbers as successive base therefore it is guaranteed
     * to be always correct (see Handbook of applied cryptography by Menezes,
     * table 4.1).
     *
     * @param n Number to test: an odd integer &ge; 3.
     * @return true if {@code n} is prime, false if it is definitely composite.
     */
    static boolean millerRabinPrimeTest(final int n) {
        final int nMinus1 = n - 1;
        final int s = Integer.numberOfTrailingZeros(nMinus1);
        final int r = nMinus1 >> s;
        // r must be odd, it is not checked here
        int t = 1;
        if (n >= 2047) {
            t = 2;
        }
        if (n >= 1373653) {
            t = 3;
        }
        if (n >= 25326001) {
            t = 4;
        } // works up to 3.2 billion, int range stops at 2.7 so we are safe :-)
        final BigInteger br = BigInteger.valueOf(r);
        final BigInteger bn = BigInteger.valueOf(n);

        for (int i = 0; i < t; i++) {
            final BigInteger a = BigInteger.valueOf(PRIMES[i]);
            final BigInteger bPow = a.modPow(br, bn);
            int y = bPow.intValue();
            if (1 != y && y != nMinus1) {
                int j = 1;
                while (j <= s - 1 && nMinus1 != y) {
                    final long square = ((long) y) * y;
                    y = (int) (square % n);
                    if (1 == y) {
                        return false;
                    } // definitely composite
                    j++;
                }
                if (nMinus1 != y) {
                    return false;
                } // definitely composite
            }
        }
        return true; // definitely prime
    }
}