BoostGamma.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//  Copyright John Maddock 2006-7, 2013-20.
//  Copyright Paul A. Bristow 2007, 2013-14.
//  Copyright Nikhar Agrawal 2013-14
//  Copyright Christopher Kormanyos 2013-14, 2020
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

package org.apache.commons.numbers.gamma;

import java.util.function.DoubleSupplier;
import java.util.function.Supplier;
import org.apache.commons.numbers.core.Sum;
import org.apache.commons.numbers.fraction.GeneralizedContinuedFraction;
import org.apache.commons.numbers.fraction.GeneralizedContinuedFraction.Coefficient;

/**
 * Implementation of the
 * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">Regularized Gamma functions</a> and
 * <a href="https://mathworld.wolfram.com/IncompleteGammaFunction.html">Incomplete Gamma functions</a>.
 *
 * <p>This code has been adapted from the <a href="https://www.boost.org/">Boost</a>
 * {@code c++} implementation {@code <boost/math/special_functions/gamma.hpp>}.
 * All work is copyright to the original authors and subject to the Boost Software License.
 *
 * @see
 * <a href="https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_gamma.html">
 * Boost C++ Gamma functions</a>
 */
final class BoostGamma {
    //
    // Code ported from Boost 1.77.0
    //
    // boost/math/special_functions/gamma.hpp
    // boost/math/special_functions/detail/igamma_large.hpp
    // boost/math/special_functions/lanczos.hpp
    //
    // Original code comments are preserved.
    //
    // Changes to the Boost implementation:
    // - Update method names to replace underscores with camel case
    // - Explicitly inline the polynomial function evaluation
    //   using Horner's method (https://en.wikipedia.org/wiki/Horner%27s_method)
    // - Remove checks for under/overflow. In this implementation no error is raised
    //   for overflow (infinity is returned) or underflow (sub-normal or zero is returned).
    //   This follows the conventions in java.lang.Math for the same conditions.
    // - Removed the pointer p_derivative in the gammaIncompleteImp. This is used
    //   in the Boost code for the gamma_(p|q)_inv functions for a derivative
    //   based inverse function. This is currently not supported.
    // - Added extended precision arithmetic for some series summations or other computations.
    //   The Boost default policy is to evaluate in long double for a double result. Extended
    //   precision is not possible for the entire computation but has been used where
    //   possible for some terms to reduce errors. Error reduction verified on the test data.
    // - Altered the tgamma(x) function to use the double-precision NSWC Library of Mathematics
    //   Subroutines when the error is lower. This is for the non Lanczos code.
    // - Altered the condition used for the asymptotic approximation method to avoid
    //   loss of precision in the series summation when a ~ z.
    // - Altered series generators to use integer counters added to the double term
    //   replacing directly incrementing a double term. When the term is large it cannot
    //   be incremented: 1e16 + 1 == 1e16.
    // - Removed unreachable code branch in tgammaDeltaRatioImpLanczos when z + delta == z.
    //
    // Note:
    // The major source of error is in the function regularisedGammaPrefix when computing
    // (z^a)(e^-z)/tgamma(a) with extreme input to the power and exponential terms.
    // An extended precision pow and exp function returning a quad length result would
    // be required to reduce error for these arguments. Tests using the Dfp class
    // from o.a.c.math4.legacy.core have been demonstrated to effectively eliminate the
    // errors from the power terms and improve accuracy on the current test data.
    // In the interest of performance the Dfp class is not used in this version.

    /** Default epsilon value for relative error.
     * This is equal to the Boost constant {@code boost::math::tools::epsilon<double>()}. */
    private static final double EPSILON = 0x1.0p-52;
    /** Value for the sqrt of the epsilon for relative error.
     * This is equal to the Boost constant {@code boost::math::tools::root_epsilon<double>()}. */
    private static final double ROOT_EPSILON = 1.4901161193847656E-8;
    /** Approximate value for ln(Double.MAX_VALUE).
     * This is equal to the Boost constant {@code boost::math::tools::log_max_value<double>()}.
     * No term {@code x} should be used in {@code exp(x)} if {@code x > LOG_MAX_VALUE} to avoid
     * overflow. */
    private static final int LOG_MAX_VALUE = 709;
    /** Approximate value for ln(Double.MIN_VALUE).
     * This is equal to the Boost constant {@code boost::math::tools::log_min_value<double>()}.
     * No term {@code x} should be used in {@code exp(x)} if {@code x < LOG_MIN_VALUE} to avoid
     * underflow to sub-normal or zero. */
    private static final int LOG_MIN_VALUE = -708;
    /** The largest factorial that can be represented as a double.
     * This is equal to the Boost constant {@code boost::math::max_factorial<double>::value}. */
    private static final int MAX_FACTORIAL = 170;
    /** The largest integer value for gamma(z) that can be represented as a double. */
    private static final int MAX_GAMMA_Z = MAX_FACTORIAL + 1;
    /** ln(sqrt(2 pi)). Computed to 25-digits precision. */
    private static final double LOG_ROOT_TWO_PI = 0.9189385332046727417803297;
    /** ln(pi). Computed to 25-digits precision. */
    private static final double LOG_PI = 1.144729885849400174143427;
    /** Euler's constant. */
    private static final double EULER = 0.5772156649015328606065120900824024310;
    /** The threshold value for choosing the Lanczos approximation. */
    private static final int LANCZOS_THRESHOLD = 20;
    /** 2^53. */
    private static final double TWO_POW_53 = 0x1.0p53;

    /** All factorials that can be represented as a double. Size = 171. */
    private static final double[] FACTORIAL = {
        1,
        1,
        2,
        6,
        24,
        120,
        720,
        5040,
        40320,
        362880.0,
        3628800.0,
        39916800.0,
        479001600.0,
        6227020800.0,
        87178291200.0,
        1307674368000.0,
        20922789888000.0,
        355687428096000.0,
        6402373705728000.0,
        121645100408832000.0,
        0.243290200817664e19,
        0.5109094217170944e20,
        0.112400072777760768e22,
        0.2585201673888497664e23,
        0.62044840173323943936e24,
        0.15511210043330985984e26,
        0.403291461126605635584e27,
        0.10888869450418352160768e29,
        0.304888344611713860501504e30,
        0.8841761993739701954543616e31,
        0.26525285981219105863630848e33,
        0.822283865417792281772556288e34,
        0.26313083693369353016721801216e36,
        0.868331761881188649551819440128e37,
        0.29523279903960414084761860964352e39,
        0.103331479663861449296666513375232e41,
        0.3719933267899012174679994481508352e42,
        0.137637530912263450463159795815809024e44,
        0.5230226174666011117600072241000742912e45,
        0.203978820811974433586402817399028973568e47,
        0.815915283247897734345611269596115894272e48,
        0.3345252661316380710817006205344075166515e50,
        0.1405006117752879898543142606244511569936e52,
        0.6041526306337383563735513206851399750726e53,
        0.265827157478844876804362581101461589032e55,
        0.1196222208654801945619631614956577150644e57,
        0.5502622159812088949850305428800254892962e58,
        0.2586232415111681806429643551536119799692e60,
        0.1241391559253607267086228904737337503852e62,
        0.6082818640342675608722521633212953768876e63,
        0.3041409320171337804361260816606476884438e65,
        0.1551118753287382280224243016469303211063e67,
        0.8065817517094387857166063685640376697529e68,
        0.427488328406002556429801375338939964969e70,
        0.2308436973392413804720927426830275810833e72,
        0.1269640335365827592596510084756651695958e74,
        0.7109985878048634518540456474637249497365e75,
        0.4052691950487721675568060190543232213498e77,
        0.2350561331282878571829474910515074683829e79,
        0.1386831185456898357379390197203894063459e81,
        0.8320987112741390144276341183223364380754e82,
        0.507580213877224798800856812176625227226e84,
        0.3146997326038793752565312235495076408801e86,
        0.1982608315404440064116146708361898137545e88,
        0.1268869321858841641034333893351614808029e90,
        0.8247650592082470666723170306785496252186e91,
        0.5443449390774430640037292402478427526443e93,
        0.3647111091818868528824985909660546442717e95,
        0.2480035542436830599600990418569171581047e97,
        0.1711224524281413113724683388812728390923e99,
        0.1197857166996989179607278372168909873646e101,
        0.8504785885678623175211676442399260102886e102,
        0.6123445837688608686152407038527467274078e104,
        0.4470115461512684340891257138125051110077e106,
        0.3307885441519386412259530282212537821457e108,
        0.2480914081139539809194647711659403366093e110,
        0.188549470166605025498793226086114655823e112,
        0.1451830920282858696340707840863082849837e114,
        0.1132428117820629783145752115873204622873e116,
        0.8946182130782975286851441715398316520698e117,
        0.7156945704626380229481153372318653216558e119,
        0.5797126020747367985879734231578109105412e121,
        0.4753643337012841748421382069894049466438e123,
        0.3945523969720658651189747118012061057144e125,
        0.3314240134565353266999387579130131288001e127,
        0.2817104114380550276949479442260611594801e129,
        0.2422709538367273238176552320344125971528e131,
        0.210775729837952771721360051869938959523e133,
        0.1854826422573984391147968456455462843802e135,
        0.1650795516090846108121691926245361930984e137,
        0.1485715964481761497309522733620825737886e139,
        0.1352001527678402962551665687594951421476e141,
        0.1243841405464130725547532432587355307758e143,
        0.1156772507081641574759205162306240436215e145,
        0.1087366156656743080273652852567866010042e147,
        0.103299784882390592625997020993947270954e149,
        0.9916779348709496892095714015418938011582e150,
        0.9619275968248211985332842594956369871234e152,
        0.942689044888324774562618574305724247381e154,
        0.9332621544394415268169923885626670049072e156,
        0.9332621544394415268169923885626670049072e158,
        0.9425947759838359420851623124482936749562e160,
        0.9614466715035126609268655586972595484554e162,
        0.990290071648618040754671525458177334909e164,
        0.1029901674514562762384858386476504428305e167,
        0.1081396758240290900504101305800329649721e169,
        0.1146280563734708354534347384148349428704e171,
        0.1226520203196137939351751701038733888713e173,
        0.132464181945182897449989183712183259981e175,
        0.1443859583202493582204882102462797533793e177,
        0.1588245541522742940425370312709077287172e179,
        0.1762952551090244663872161047107075788761e181,
        0.1974506857221074023536820372759924883413e183,
        0.2231192748659813646596607021218715118256e185,
        0.2543559733472187557120132004189335234812e187,
        0.2925093693493015690688151804817735520034e189,
        0.339310868445189820119825609358857320324e191,
        0.396993716080872089540195962949863064779e193,
        0.4684525849754290656574312362808384164393e195,
        0.5574585761207605881323431711741977155627e197,
        0.6689502913449127057588118054090372586753e199,
        0.8094298525273443739681622845449350829971e201,
        0.9875044200833601362411579871448208012564e203,
        0.1214630436702532967576624324188129585545e206,
        0.1506141741511140879795014161993280686076e208,
        0.1882677176888926099743767702491600857595e210,
        0.237217324288004688567714730513941708057e212,
        0.3012660018457659544809977077527059692324e214,
        0.3856204823625804217356770659234636406175e216,
        0.4974504222477287440390234150412680963966e218,
        0.6466855489220473672507304395536485253155e220,
        0.8471580690878820510984568758152795681634e222,
        0.1118248651196004307449963076076169029976e225,
        0.1487270706090685728908450891181304809868e227,
        0.1992942746161518876737324194182948445223e229,
        0.269047270731805048359538766214698040105e231,
        0.3659042881952548657689727220519893345429e233,
        0.5012888748274991661034926292112253883237e235,
        0.6917786472619488492228198283114910358867e237,
        0.9615723196941089004197195613529725398826e239,
        0.1346201247571752460587607385894161555836e242,
        0.1898143759076170969428526414110767793728e244,
        0.2695364137888162776588507508037290267094e246,
        0.3854370717180072770521565736493325081944e248,
        0.5550293832739304789551054660550388118e250,
        0.80479260574719919448490292577980627711e252,
        0.1174997204390910823947958271638517164581e255,
        0.1727245890454638911203498659308620231933e257,
        0.2556323917872865588581178015776757943262e259,
        0.380892263763056972698595524350736933546e261,
        0.571338395644585459047893286526105400319e263,
        0.8627209774233240431623188626544191544816e265,
        0.1311335885683452545606724671234717114812e268,
        0.2006343905095682394778288746989117185662e270,
        0.308976961384735088795856467036324046592e272,
        0.4789142901463393876335775239063022722176e274,
        0.7471062926282894447083809372938315446595e276,
        0.1172956879426414428192158071551315525115e279,
        0.1853271869493734796543609753051078529682e281,
        0.2946702272495038326504339507351214862195e283,
        0.4714723635992061322406943211761943779512e285,
        0.7590705053947218729075178570936729485014e287,
        0.1229694218739449434110178928491750176572e290,
        0.2004401576545302577599591653441552787813e292,
        0.3287218585534296227263330311644146572013e294,
        0.5423910666131588774984495014212841843822e296,
        0.9003691705778437366474261723593317460744e298,
        0.1503616514864999040201201707840084015944e301,
        0.2526075744973198387538018869171341146786e303,
        0.4269068009004705274939251888899566538069e305,
        0.7257415615307998967396728211129263114717e307,
    };

    /**
     * 53-bit precision implementation of the Lanczos approximation.
     *
     * <p>This implementation is in partial fraction form with the leading constant
     * of \( \sqrt{2\pi} \) absorbed into the sum.
     *
     * <p>It is related to the Gamma function by the following equation
     * \[
     * \Gamma(z) = \frac{(z + g - 0.5)^{z - 0.5}}{e^{z + g - 0.5}} \mathrm{lanczos}(z)
     * \]
     * where \( g \) is the Lanczos constant.
     *
     * <h2>Warning</h2>
     *
     * <p>This is not a substitute for {@link LanczosApproximation}. The approximation is
     * written in partial fraction form with the leading constants absorbed by the
     * coefficients in the sum.
     *
     * @see <a href="https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/lanczos.html">
     * Boost Lanczos Approximation</a>
     */
    static final class Lanczos {
        // Optimal values for G for each N are taken from
        // http://web.mala.bc.ca/pughg/phdThesis/phdThesis.pdf,
        // as are the theoretical error bounds.
        //
        // Constants calculated using the method described by Godfrey
        // http://my.fit.edu/~gabdo/gamma.txt and elaborated by Toth at
        // http://www.rskey.org/gamma.htm using NTL::RR at 1000 bit precision.

        //
        // Lanczos Coefficients for N=13 G=6.024680040776729583740234375
        // Max experimental error (with arbitrary precision arithmetic) 1.196214e-17
        // Generated with compiler: Microsoft Visual C++ version 8.0 on Win32 at Mar 23 2006
        //

        /**
         * Lanczos constant G.
         */
        static final double G = 6.024680040776729583740234375;

        /**
         * Lanczos constant G - half.
         *
         * <p>Note: The form {@code (g - 0.5)} is used when computing the gamma function.
         */
        static final double GMH = 5.524680040776729583740234375;

        /** Common denominator used for the rational evaluation. */
        private static final int[] DENOM = {
            0,
            39916800,
            120543840,
            150917976,
            105258076,
            45995730,
            13339535,
            2637558,
            357423,
            32670,
            1925,
            66,
            1
        };

        /** Private constructor. */
        private Lanczos() {
            // intentionally empty.
        }

        /**
         * Computes the Lanczos approximation.
         *
         * @param z Argument.
         * @return the Lanczos approximation.
         */
        static double lanczosSum(double z) {
            final double[] num = {
                23531376880.41075968857200767445163675473,
                42919803642.64909876895789904700198885093,
                35711959237.35566804944018545154716670596,
                17921034426.03720969991975575445893111267,
                6039542586.35202800506429164430729792107,
                1439720407.311721673663223072794912393972,
                248874557.8620541565114603864132294232163,
                31426415.58540019438061423162831820536287,
                2876370.628935372441225409051620849613599,
                186056.2653952234950402949897160456992822,
                8071.672002365816210638002902272250613822,
                210.8242777515793458725097339207133627117,
                2.506628274631000270164908177133837338626
            };
            return evaluateRational(num, DENOM, z);
        }

        /**
         * Computes the Lanczos approximation scaled by {@code exp(g)}.
         *
         * @param z Argument.
         * @return the scaled Lanczos approximation.
         */
        static double lanczosSumExpGScaled(double z) {
            // As above with numerator divided by exp(g) = 413.509...
            final double[] num = {
                56906521.91347156388090791033559122686859,
                103794043.1163445451906271053616070238554,
                86363131.28813859145546927288977868422342,
                43338889.32467613834773723740590533316085,
                14605578.08768506808414169982791359218571,
                3481712.15498064590882071018964774556468,
                601859.6171681098786670226533699352302507,
                75999.29304014542649875303443598909137092,
                6955.999602515376140356310115515198987526,
                449.9445569063168119446858607650988409623,
                19.51992788247617482847860966235652136208,
                0.5098416655656676188125178644804694509993,
                0.006061842346248906525783753964555936883222
            };
            return evaluateRational(num, DENOM, z);
        }

        /**
         * Evaluate the rational number as two polynomials.
         *
         * <p>Adapted from {@code boost/math/tools/detail/rational_horner3_13.hpp}.
         * Note: There are 3 variations of the unrolled rational evaluation.
         * These methods change the order based on the sign of x. This
         * should be used for the Lanczos code as this comment in
         * {@code boost/math/tools/rational.hpp} notes:
         *
         * <blockquote>
         * However, there
         * are some tricks we can use to prevent overflow that might otherwise
         * occur in polynomial evaluation, if z is large.  This is important
         * in our Lanczos code for example.
         * </blockquote>
         *
         * @param a Coefficients of the numerator polynomial
         * @param b Coefficients of the denominator polynomial
         * @param x Value
         * @return the rational number
         */
        private static double evaluateRational(double[] a, int[] b, double x) {
            // The choice of algorithm in Boost is based on the compiler
            // to suite the available optimisations.
            //
            // Tests against rational_horner1_13.hpp which uses a first order
            // Horner method (no x*x term) show only minor variations in
            // error. rational_horner2_13.hpp has the same second order Horner
            // method with different code layout of the same sum.

            // rational_horner3_13.hpp
            if (x <= 1) {
                final double x2 = x * x;
                double t0 = a[12] * x2 + a[10];
                double t1 = a[11] * x2 + a[9];
                double t2 = b[12] * x2 + b[10];
                double t3 = b[11] * x2 + b[9];
                t0 *= x2;
                t1 *= x2;
                t2 *= x2;
                t3 *= x2;
                t0 += a[8];
                t1 += a[7];
                t2 += b[8];
                t3 += b[7];
                t0 *= x2;
                t1 *= x2;
                t2 *= x2;
                t3 *= x2;
                t0 += a[6];
                t1 += a[5];
                t2 += b[6];
                t3 += b[5];
                t0 *= x2;
                t1 *= x2;
                t2 *= x2;
                t3 *= x2;
                t0 += a[4];
                t1 += a[3];
                t2 += b[4];
                t3 += b[3];
                t0 *= x2;
                t1 *= x2;
                t2 *= x2;
                t3 *= x2;
                t0 += a[2];
                t1 += a[1];
                t2 += b[2];
                t3 += b[1];
                t0 *= x2;
                t2 *= x2;
                t0 += a[0];
                t2 += b[0];
                t1 *= x;
                t3 *= x;
                return (t0 + t1) / (t2 + t3);
            }
            final double z = 1 / x;
            final double z2 = 1 / (x * x);
            double t0 = a[0] * z2 + a[2];
            double t1 = a[1] * z2 + a[3];
            double t2 = b[0] * z2 + b[2];
            double t3 = b[1] * z2 + b[3];
            t0 *= z2;
            t1 *= z2;
            t2 *= z2;
            t3 *= z2;
            t0 += a[4];
            t1 += a[5];
            t2 += b[4];
            t3 += b[5];
            t0 *= z2;
            t1 *= z2;
            t2 *= z2;
            t3 *= z2;
            t0 += a[6];
            t1 += a[7];
            t2 += b[6];
            t3 += b[7];
            t0 *= z2;
            t1 *= z2;
            t2 *= z2;
            t3 *= z2;
            t0 += a[8];
            t1 += a[9];
            t2 += b[8];
            t3 += b[9];
            t0 *= z2;
            t1 *= z2;
            t2 *= z2;
            t3 *= z2;
            t0 += a[10];
            t1 += a[11];
            t2 += b[10];
            t3 += b[11];
            t0 *= z2;
            t2 *= z2;
            t0 += a[12];
            t2 += b[12];
            t1 *= z;
            t3 *= z;
            return (t0 + t1) / (t2 + t3);
        }

        // Not implemented:
        // lanczos_sum_near_1
        // lanczos_sum_near_2
    }

    /** Private constructor. */
    private BoostGamma() {
        // intentionally empty.
    }

    /**
     * All factorials that are representable as a double.
     * This data is exposed for testing.
     *
     * @return factorials
     */
    static double[] getFactorials() {
        return FACTORIAL.clone();
    }

    /**
     * Returns the factorial of n.
     * This is unchecked as an index out of bound exception will occur
     * if the value n is not within the range [0, 170].
     * This function is exposed for use in {@link BoostBeta}.
     *
     * @param n Argument n (must be in [0, 170])
     * @return n!
     */
    static double uncheckedFactorial(int n) {
        return FACTORIAL[n];
    }

    /**
     * Gamma function.
     *
     * <p>For small {@code z} this is based on the <em>NSWC Library of Mathematics
     * Subroutines</em> double precision implementation, {@code DGAMMA}.
     *
     * <p>For large {@code z} this is an implementation of the Boost C++ tgamma
     * function with Lanczos support.
     *
     * <p>Integers are handled using a look-up table of factorials.
     *
     * <p>Note: The Boost C++ implementation uses the Lanczos sum for all {@code z}.
     * When promotion of double to long double is not available this has larger
     * errors than the double precision specific NSWC implementation. For larger
     * {@code z} the Boost C++ Lanczos implementation incorporates the sqrt(2 pi)
     * factor and has lower error than the implementation using the
     * {@link LanczosApproximation} class.
     *
     * @param z Argument z
     * @return gamma value
     */
    static double tgamma(double z) {
        // Handle integers
        if (Math.rint(z) == z) {
            if (z <= 0) {
                // Pole error
                return Double.NaN;
            }
            if (z <= MAX_GAMMA_Z) {
                // Gamma(n) = (n-1)!
                return FACTORIAL[(int) z - 1];
            }
            // Overflow
            return Double.POSITIVE_INFINITY;
        }

        if (Math.abs(z) <= LANCZOS_THRESHOLD) {
            // Small z
            // NSWC Library of Mathematics Subroutines
            // Note:
            // This does not benefit from using extended precision to track the sum (t).
            // Extended precision on the product reduces the error but the majority
            // of error remains in InvGamma1pm1.

            if (z >= 1) {
                /*
                 * From the recurrence relation
                 * Gamma(x) = (x - 1) * ... * (x - n) * Gamma(x - n),
                 * then
                 * Gamma(t) = 1 / [1 + InvGamma1pm1.value(t - 1)],
                 * where t = x - n. This means that t must satisfy
                 * -0.5 <= t - 1 <= 1.5.
                 */
                double prod = 1;
                double t = z;
                while (t > 2.5) {
                    t -= 1;
                    prod *= t;
                }
                return prod / (1 + InvGamma1pm1.value(t - 1));
            }
            /*
             * From the recurrence relation
             * Gamma(x) = Gamma(x + n + 1) / [x * (x + 1) * ... * (x + n)]
             * then
             * Gamma(x + n + 1) = 1 / [1 + InvGamma1pm1.value(x + n)],
             * which requires -0.5 <= x + n <= 1.5.
             */
            double prod = z;
            double t = z;
            while (t < -0.5) {
                t += 1;
                prod *= t;
            }
            return 1 / (prod * (1 + InvGamma1pm1.value(t)));
        }

        // Large non-integer z
        // Boost C++ tgamma implementation

        if (z < 0) {
            /*
             * From the reflection formula
             * Gamma(x) * Gamma(1 - x) * sin(pi * x) = pi,
             * and the recurrence relation
             * Gamma(1 - x) = -x * Gamma(-x),
             * it is found
             * Gamma(x) = -pi / [x * sin(pi * x) * Gamma(-x)].
             */
            return -Math.PI / (sinpx(z) * tgamma(-z));
        } else if (z > MAX_GAMMA_Z + 1) {
            // Addition to the Boost code: Simple overflow detection
            return Double.POSITIVE_INFINITY;
        }

        double result = Lanczos.lanczosSum(z);
        final double zgh = z + Lanczos.GMH;
        final double lzgh = Math.log(zgh);
        if (z * lzgh > LOG_MAX_VALUE) {
            // we're going to overflow unless this is done with care:

            // Updated
            // Check for overflow removed:
            // if (lzgh * z / 2 > LOG_MAX_VALUE) ... overflow
            // This is replaced by checking z > MAX_FACTORIAL + 2

            final double hp = Math.pow(zgh, (z / 2) - 0.25);
            result *= hp / Math.exp(zgh);
            // Check for overflow has been removed:
            // if (Double.MAX_VALUE / hp < result) ... overflow
            result *= hp;
        } else {
            result *= Math.pow(zgh, z - 0.5) / Math.exp(zgh);
        }

        return result;
    }

    /**
     * Ad hoc function calculates x * sin(pi * x), taking extra care near when x is
     * near a whole number.
     *
     * @param x Value (assumed to be negative)
     * @return x * sin(pi * x)
     */
    static double sinpx(double x) {
        int sign = 1;
        // This is always called with a negative
        // if (x < 0)
        x = -x;
        double fl = Math.floor(x);
        double dist;
        if (isOdd(fl)) {
            fl += 1;
            dist = fl - x;
            sign = -sign;
        } else {
            dist = x - fl;
        }
        if (dist > 0.5f) {
            dist = 1 - dist;
        }
        final double result = Math.sin(dist * Math.PI);
        return sign * x * result;
    }

    /**
     * Checks if the value is odd.
     *
     * @param v Value (assumed to be positive and an integer)
     * @return true if odd
     */
    private static boolean isOdd(double v) {
        // Note:
        // Any value larger than 2^53 should be even.
        // If the input is positive then truncation of extreme doubles (>2^63)
        // to the primitive long creates an odd value: 2^63-1.
        // This is corrected by inverting the sign of v and the extreme is even: -2^63.
        // This function is never called when the argument is this large
        // as this is a pole error in tgamma so the effect is never observed.
        // However the isOdd function is correct for all positive finite v.
        return (((long) -v) & 0x1) == 1;
    }

    /**
     * Log Gamma function.
     * Defined as the natural logarithm of the absolute value of tgamma(z).
     *
     * @param z Argument z
     * @return log gamma value
     */
    static double lgamma(double z) {
        return lgamma(z, null);
    }

    /**
     * Log Gamma function.
     * Defined as the natural logarithm of the absolute value of tgamma(z).
     *
     * @param z Argument z
     * @param sign If a non-zero length array the first index is set on output to the sign of tgamma(z)
     * @return log gamma value
     */
    static double lgamma(double z, int[] sign) {
        double result;
        int sresult = 1;
        if (z <= -ROOT_EPSILON) {
            // reflection formula:
            if (Math.rint(z) == z) {
                // Pole error
                return Double.NaN;
            }

            double t = sinpx(z);
            z = -z;
            if (t < 0) {
                t = -t;
            } else {
                sresult = -sresult;
            }

            // This summation can have large magnitudes with opposite signs.
            // Use an extended precision sum to reduce cancellation.
            result = Sum.of(-lgamma(z)).add(-Math.log(t)).add(LOG_PI).getAsDouble();

        } else if (z < ROOT_EPSILON) {
            if (z == 0) {
                // Pole error
                return Double.NaN;
            }
            if (4 * Math.abs(z) < EPSILON) {
                result = -Math.log(Math.abs(z));
            } else {
                result = Math.log(Math.abs(1 / z - EULER));
            }
            if (z < 0) {
                sresult = -1;
            }
        } else if (z < 15) {
            result = lgammaSmall(z, z - 1, z - 2);
        // The z > 3 condition is always true
        //} else if (z > 3 && z < 100) {
        } else if (z < 100) {
            // taking the log of tgamma reduces the error, no danger of overflow here:
            result = Math.log(tgamma(z));
        } else {
            // regular evaluation:
            final double zgh = z + Lanczos.GMH;
            result = Math.log(zgh) - 1;
            result *= z - 0.5f;
            //
            // Only add on the lanczos sum part if we're going to need it:
            //
            if (result * EPSILON < 20) {
                result += Math.log(Lanczos.lanczosSumExpGScaled(z));
            }
        }

        if (nonZeroLength(sign)) {
            sign[0] = sresult;
        }
        return result;
    }

    /**
     * Log Gamma function for small z.
     *
     * @param z Argument z
     * @param zm1 {@code z - 1}
     * @param zm2 {@code z - 2}
     * @return log gamma value
     */
    private static double lgammaSmall(double z, double zm1, double zm2) {
        // This version uses rational approximations for small
        // values of z accurate enough for 64-bit mantissas
        // (80-bit long doubles), works well for 53-bit doubles as well.

        // Updated to use an extended precision sum
        final Sum result = Sum.create();

        // Note:
        // Removed z < EPSILON branch.
        // The function is called
        // from lgamma:
        //   ROOT_EPSILON <= z < 15
        // from tgamma1pm1:
        //   1.5 <= z < 2
        //   1 <= z < 3

        if ((zm1 == 0) || (zm2 == 0)) {
            // nothing to do, result is zero....
            return 0;
        } else if (z > 2) {
            //
            // Begin by performing argument reduction until
            // z is in [2,3):
            //
            if (z >= 3) {
                do {
                    z -= 1;
                    result.add(Math.log(z));
                } while (z >= 3);
                // Update zm2, we need it below:
                zm2 = z - 2;
            }

            //
            // Use the following form:
            //
            // lgamma(z) = (z-2)(z+1)(Y + R(z-2))
            //
            // where R(z-2) is a rational approximation optimised for
            // low absolute error - as long as its absolute error
            // is small compared to the constant Y - then any rounding
            // error in its computation will get wiped out.
            //
            // R(z-2) has the following properties:
            //
            // At double: Max error found:                    4.231e-18
            // At long double: Max error found:               1.987e-21
            // Maximum Deviation Found (approximation error): 5.900e-24
            //
            double P;
            P = -0.324588649825948492091e-4;
            P = -0.541009869215204396339e-3 + P * zm2;
            P = -0.259453563205438108893e-3 + P * zm2;
            P =  0.172491608709613993966e-1 + P * zm2;
            P =  0.494103151567532234274e-1 + P * zm2;
            P =   0.25126649619989678683e-1 + P * zm2;
            P = -0.180355685678449379109e-1 + P * zm2;
            double Q;
            Q = -0.223352763208617092964e-6;
            Q =  0.224936291922115757597e-3 + Q * zm2;
            Q =   0.82130967464889339326e-2 + Q * zm2;
            Q =  0.988504251128010129477e-1 + Q * zm2;
            Q =   0.541391432071720958364e0 + Q * zm2;
            Q =   0.148019669424231326694e1 + Q * zm2;
            Q =   0.196202987197795200688e1 + Q * zm2;
            Q =                       0.1e1 + Q * zm2;

            final float Y = 0.158963680267333984375e0f;

            final double r = zm2 * (z + 1);
            final double R = P / Q;

            result.addProduct(r, Y).addProduct(r, R);
        } else {
            //
            // If z is less than 1 use recurrence to shift to
            // z in the interval [1,2]:
            //
            if (z < 1) {
                result.add(-Math.log(z));
                zm2 = zm1;
                zm1 = z;
                z += 1;
            }
            //
            // Two approximations, one for z in [1,1.5] and
            // one for z in [1.5,2]:
            //
            if (z <= 1.5) {
                //
                // Use the following form:
                //
                // lgamma(z) = (z-1)(z-2)(Y + R(z-1
                //
                // where R(z-1) is a rational approximation optimised for
                // low absolute error - as long as its absolute error
                // is small compared to the constant Y - then any rounding
                // error in its computation will get wiped out.
                //
                // R(z-1) has the following properties:
                //
                // At double precision: Max error found:                1.230011e-17
                // At 80-bit long double precision:   Max error found:  5.631355e-21
                // Maximum Deviation Found:                             3.139e-021
                // Expected Error Term:                                 3.139e-021

                //
                final float Y = 0.52815341949462890625f;

                double P;
                P = -0.100346687696279557415e-2;
                P = -0.240149820648571559892e-1 + P * zm1;
                P =  -0.158413586390692192217e0 + P * zm1;
                P =  -0.406567124211938417342e0 + P * zm1;
                P =  -0.414983358359495381969e0 + P * zm1;
                P = -0.969117530159521214579e-1 + P * zm1;
                P =  0.490622454069039543534e-1 + P * zm1;
                double Q;
                Q = 0.195768102601107189171e-2;
                Q = 0.577039722690451849648e-1 + Q * zm1;
                Q =  0.507137738614363510846e0 + Q * zm1;
                Q =  0.191415588274426679201e1 + Q * zm1;
                Q =  0.348739585360723852576e1 + Q * zm1;
                Q =  0.302349829846463038743e1 + Q * zm1;
                Q =                      0.1e1 + Q * zm1;

                final double r = P / Q;
                final double prefix = zm1 * zm2;

                result.addProduct(prefix, Y).addProduct(prefix, r);
            } else {
                //
                // Use the following form:
                //
                // lgamma(z) = (2-z)(1-z)(Y + R(2-z
                //
                // where R(2-z) is a rational approximation optimised for
                // low absolute error - as long as its absolute error
                // is small compared to the constant Y - then any rounding
                // error in its computation will get wiped out.
                //
                // R(2-z) has the following properties:
                //
                // At double precision, max error found:              1.797565e-17
                // At 80-bit long double precision, max error found:  9.306419e-21
                // Maximum Deviation Found:                           2.151e-021
                // Expected Error Term:                               2.150e-021
                //
                final float Y = 0.452017307281494140625f;

                final double mzm2 = -zm2;
                double P;
                P =  0.431171342679297331241e-3;
                P = -0.850535976868336437746e-2 + P * mzm2;
                P =  0.542809694055053558157e-1 + P * mzm2;
                P =  -0.142440390738631274135e0 + P * mzm2;
                P =   0.144216267757192309184e0 + P * mzm2;
                P = -0.292329721830270012337e-1 + P * mzm2;
                double Q;
                Q = -0.827193521891290553639e-6;
                Q = -0.100666795539143372762e-2 + Q * mzm2;
                Q =   0.25582797155975869989e-1 + Q * mzm2;
                Q =  -0.220095151814995745555e0 + Q * mzm2;
                Q =   0.846973248876495016101e0 + Q * mzm2;
                Q =  -0.150169356054485044494e1 + Q * mzm2;
                Q =                       0.1e1 + Q * mzm2;
                final double r = zm2 * zm1;
                final double R = P / Q;

                result.addProduct(r, Y).addProduct(r, R);
            }
        }
        return result.getAsDouble();
    }

    /**
     * Calculates tgamma(1+dz)-1.
     *
     * @param dz Argument
     * @return tgamma(1+dz)-1
     */
    static double tgamma1pm1(double dz) {
        //
        // This helper calculates tgamma(1+dz)-1 without cancellation errors,
        // used by the upper incomplete gamma with z < 1:
        //
        final double result;
        if (dz < 0) {
            if (dz < -0.5) {
                // Best method is simply to subtract 1 from tgamma:
                result = tgamma(1 + dz) - 1;
            } else {
                // Use expm1 on lgamma:
                result = Math.expm1(-Math.log1p(dz) + lgammaSmall(dz + 2, dz + 1, dz));
            }
        } else {
            if (dz < 2) {
                // Use expm1 on lgamma:
                result = Math.expm1(lgammaSmall(dz + 1, dz, dz - 1));
            } else {
                // Best method is simply to subtract 1 from tgamma:
                result = tgamma(1 + dz) - 1;
            }
        }

        return result;
    }

    /**
     * Full upper incomplete gamma.
     *
     * @param a Argument a
     * @param x Argument x
     * @return upper gamma value
     */
    static double tgamma(double a, double x) {
        return gammaIncompleteImp(a, x, false, true, Policy.getDefault());
    }

    /**
     * Full upper incomplete gamma.
     *
     * @param a Argument a
     * @param x Argument x
     * @param policy Function evaluation policy
     * @return upper gamma value
     */
    static double tgamma(double a, double x, Policy policy) {
        return gammaIncompleteImp(a, x, false, true, policy);
    }

    /**
     * Full lower incomplete gamma.
     *
     * @param a Argument a
     * @param x Argument x
     * @return lower gamma value
     */
    static double tgammaLower(double a, double x) {
        return gammaIncompleteImp(a, x, false, false, Policy.getDefault());
    }

    /**
     * Full lower incomplete gamma.
     *
     * @param a Argument a
     * @param x Argument x
     * @param policy Function evaluation policy
     * @return lower gamma value
     */
    static double tgammaLower(double a, double x, Policy policy) {
        return gammaIncompleteImp(a, x, false, false, policy);
    }

    /**
     * Regularised upper incomplete gamma.
     *
     * @param a Argument a
     * @param x Argument x
     * @return q
     */
    static double gammaQ(double a, double x) {
        return gammaIncompleteImp(a, x, true, true, Policy.getDefault());
    }

    /**
     * Regularised upper incomplete gamma.
     *
     * @param a Argument a
     * @param x Argument x
     * @param policy Function evaluation policy
     * @return q
     */
    static double gammaQ(double a, double x, Policy policy) {
        return gammaIncompleteImp(a, x, true, true, policy);
    }

    /**
     * Regularised lower incomplete gamma.
     *
     * @param a Argument a
     * @param x Argument x
     * @return p
     */
    static double gammaP(double a, double x) {
        return gammaIncompleteImp(a, x, true, false, Policy.getDefault());
    }

    /**
     * Regularised lower incomplete gamma.
     *
     * @param a Argument a
     * @param x Argument x
     * @param policy Function evaluation policy
     * @return p
     */
    static double gammaP(double a, double x, Policy policy) {
        return gammaIncompleteImp(a, x, true, false, policy);
    }

    /**
     * Derivative of the regularised lower incomplete gamma.
     * <p>\( \frac{e^{-x} x^{a-1}}{\Gamma(a)} \)
     *
     * <p>Adapted from {@code boost::math::detail::gamma_p_derivative_imp}
     *
     * @param a Argument a
     * @param x Argument x
     * @return p derivative
     */
    static double gammaPDerivative(double a, double x) {
        //
        // Usual error checks first:
        //
        if (Double.isNaN(a) || Double.isNaN(x) || a <= 0 || x < 0) {
            return Double.NaN;
        }
        //
        // Now special cases:
        //
        if (x == 0) {
            if (a > 1) {
                return 0;
            }
            return (a == 1) ? 1 : Double.POSITIVE_INFINITY;
        }
        //
        // Normal case:
        //
        double f1 = regularisedGammaPrefix(a, x);
        if (f1 == 0) {
            // Underflow in calculation, use logs instead:
            f1 = a * Math.log(x) - x - lgamma(a) - Math.log(x);
            f1 = Math.exp(f1);
        } else {
            // Will overflow when (x < 1) && (Double.MAX_VALUE * x < f1).
            // There is no exception for this case so just return the result.
            f1 /= x;
        }

        return f1;
    }

    /**
     * Main incomplete gamma entry point, handles all four incomplete gammas.
     * Adapted from {@code boost::math::detail::gamma_incomplete_imp}.
     *
     * <p>The Boost code has a pointer {@code p_derivative} that can be set to the
     * value of the derivative. This is used for the inverse incomplete
     * gamma functions {@code gamma_(p|q)_inv_imp}. It is not required for the forward
     * evaluation functions.
     *
     * @param a Argument a
     * @param x Argument x
     * @param normalised true to compute the regularised value
     * @param invert true to compute the upper value Q (default is lower value P)
     * @param pol Function evaluation policy
     * @return gamma value
     */
    private static double gammaIncompleteImp(double a, double x,
            boolean normalised, boolean invert, Policy pol) {
        if (Double.isNaN(a) || Double.isNaN(x) || a <= 0 || x < 0) {
            return Double.NaN;
        }

        double result = 0;

        if (a >= MAX_FACTORIAL && !normalised) {
            //
            // When we're computing the non-normalized incomplete gamma
            // and a is large the result is rather hard to compute unless
            // we use logs. There are really two options - if x is a long
            // way from a in value then we can reliably use methods 2 and 4
            // below in logarithmic form and go straight to the result.
            // Otherwise we let the regularized gamma take the strain
            // (the result is unlikely to underflow in the central region anyway)
            // and combine with lgamma in the hopes that we get a finite result.
            //

            if (invert && (a * 4 < x)) {
                // This is method 4 below, done in logs:
                result = a * Math.log(x) - x;
                result += Math.log(upperGammaFraction(a, x, pol));
            } else if (!invert && (a > 4 * x)) {
                // This is method 2 below, done in logs:
                result = a * Math.log(x) - x;
                result += Math.log(lowerGammaSeries(a, x, 0, pol) / a);
            } else {
                result = gammaIncompleteImp(a, x, true, invert, pol);
                if (result == 0) {
                    if (invert) {
                        // Try http://functions.wolfram.com/06.06.06.0039.01
                        result = 1 + 1 / (12 * a) + 1 / (288 * a * a);
                        result = Math.log(result) - a + (a - 0.5f) * Math.log(a) + LOG_ROOT_TWO_PI;
                    } else {
                        // This is method 2 below, done in logs, we're really outside the
                        // range of this method, but since the result is almost certainly
                        // infinite, we should probably be OK:
                        result = a * Math.log(x) - x;
                        result += Math.log(lowerGammaSeries(a, x, 0, pol) / a);
                    }
                } else {
                    result = Math.log(result) + lgamma(a);
                }
            }
            // If result is > log(MAX_VALUE) the result will overflow.
            // There is no exception for this case so just return the result.
            return Math.exp(result);
        }

        final boolean isInt;
        final boolean isHalfInt;
        // Update. x must be safe for exp(-x). Change to -x > LOG_MIN_VALUE.
        final boolean isSmallA = (a < 30) && (a <= x + 1) && (-x > LOG_MIN_VALUE);
        if (isSmallA) {
            final double fa = Math.floor(a);
            isInt = fa == a;
            isHalfInt = !isInt && (Math.abs(fa - a) == 0.5f);
        } else {
            isInt = isHalfInt = false;
        }

        final int evalMethod;

        if (isInt && (x > 0.6)) {
            // calculate Q via finite sum:
            invert = !invert;
            evalMethod = 0;
        } else if (isHalfInt && (x > 0.2)) {
            // calculate Q via finite sum for half integer a:
            invert = !invert;
            evalMethod = 1;
        } else if ((x < ROOT_EPSILON) && (a > 1)) {
            evalMethod = 6;
        } else if ((x > 1000) && (a < x * 0.75f)) {
            // Note:
            // The branch is used in Boost when:
            // ((x > 1000) && ((a < x) || (Math.abs(a - 50) / x < 1)))
            //
            // This case was added after Boost 1_68_0.
            // See: https://github.com/boostorg/math/issues/168
            //
            // When using only double precision for the evaluation
            // it is a source of error when a ~ z as the asymptotic approximation
            // sums terms t_n+1 = t_n * (a - n - 1) / z starting from t_0 = 1.
            // These terms are close to 1 when a ~ z and the sum has many terms
            // with reduced precision.
            // This has been updated to allow only cases with fast convergence.
            // It will be used when x -> infinity and a << x.

            // calculate Q via asymptotic approximation:
            invert = !invert;
            evalMethod = 7;

        } else if (x < 0.5) {
            //
            // Changeover criterion chosen to give a changeover at Q ~ 0.33
            //
            if (-0.4 / Math.log(x) < a) {
                // Compute P
                evalMethod = 2;
            } else {
                evalMethod = 3;
            }
        } else if (x < 1.1) {
            //
            // Changover here occurs when P ~ 0.75 or Q ~ 0.25:
            //
            if (x * 0.75f < a) {
                // Compute P
                evalMethod = 2;
            } else {
                evalMethod = 3;
            }
        } else {
            //
            // Begin by testing whether we're in the "bad" zone
            // where the result will be near 0.5 and the usual
            // series and continued fractions are slow to converge:
            //
            boolean useTemme = false;
            if (normalised && (a > 20)) {
                final double sigma = Math.abs((x - a) / a);
                if (a > 200) {
                    //
                    // This limit is chosen so that we use Temme's expansion
                    // only if the result would be larger than about 10^-6.
                    // Below that the regular series and continued fractions
                    // converge OK, and if we use Temme's method we get increasing
                    // errors from the dominant erfc term as its (inexact) argument
                    // increases in magnitude.
                    //
                    if (20 / a > sigma * sigma) {
                        useTemme = true;
                    }
                } else {
                    // Note in this zone we can't use Temme's expansion for
                    // types longer than an 80-bit real:
                    // it would require too many terms in the polynomials.
                    if (sigma < 0.4) {
                        useTemme = true;
                    }
                }
            }
            if (useTemme) {
                evalMethod = 5;
            } else {
                //
                // Regular case where the result will not be too close to 0.5.
                //
                // Changeover here occurs at P ~ Q ~ 0.5
                // Note that series computation of P is about x2 faster than continued fraction
                // calculation of Q, so try and use the CF only when really necessary,
                // especially for small x.
                //
                if (x - (1 / (3 * x)) < a) {
                    evalMethod = 2;
                } else {
                    evalMethod = 4;
                    invert = !invert;
                }
            }
        }

        switch (evalMethod) {
        case 0:
            result = finiteGammaQ(a, x);
            if (!normalised) {
                result *= tgamma(a);
            }
            break;
        case 1:
            result = finiteHalfGammaQ(a, x);
            if (!normalised) {
                result *= tgamma(a);
            }
            break;
        case 2:
            // Compute P:
            result = normalised ? regularisedGammaPrefix(a, x) : fullIgammaPrefix(a, x);
            if (result != 0) {
                //
                // If we're going to be inverting the result then we can
                // reduce the number of series evaluations by quite
                // a few iterations if we set an initial value for the
                // series sum based on what we'll end up subtracting it from
                // at the end.
                // Have to be careful though that this optimization doesn't
                // lead to spurious numeric overflow. Note that the
                // scary/expensive overflow checks below are more often
                // than not bypassed in practice for "sensible" input
                // values:
                //

                double initValue = 0;
                boolean optimisedInvert = false;
                if (invert) {
                    initValue = normalised ? 1 : tgamma(a);
                    if (normalised || (result >= 1) || (Double.MAX_VALUE * result > initValue)) {
                        initValue /= result;
                        if (normalised || (a < 1) || (Double.MAX_VALUE / a > initValue)) {
                            initValue *= -a;
                            optimisedInvert = true;
                        } else {
                            initValue = 0;
                        }
                    } else {
                        initValue = 0;
                    }
                }
                result *= lowerGammaSeries(a, x, initValue, pol) / a;
                if (optimisedInvert) {
                    invert = false;
                    result = -result;
                }
            }
            break;
        case 3:
            // Compute Q:
            invert = !invert;
            final double[] g = {0};
            result = tgammaSmallUpperPart(a, x, pol, g, invert);
            invert = false;
            if (normalised) {
                // Addition to the Boost code:
                if (g[0] == Double.POSITIVE_INFINITY) {
                    // Very small a will overflow gamma(a). Resort to logs.
                    // This method requires improvement as the error is very large.
                    // It is better than returning zero for a non-zero result.
                    result = Math.exp(Math.log(result) - lgamma(a));
                } else {
                    result /= g[0];
                }
            }
            break;
        case 4:
            // Compute Q:
            result = normalised ? regularisedGammaPrefix(a, x) : fullIgammaPrefix(a, x);
            if (result != 0) {
                result *= upperGammaFraction(a, x, pol);
            }
            break;
        case 5:
            // Call 53-bit version
            result = igammaTemmeLarge(a, x);
            if (x >= a) {
                invert = !invert;
            }
            break;
        case 6:
            // x is so small that P is necessarily very small too, use
            // http://functions.wolfram.com/GammaBetaErf/GammaRegularized/06/01/05/01/01/
            if (normalised) {
                // If tgamma overflows then result = 0
                result = Math.pow(x, a) / tgamma(a + 1);
            } else {
                result = Math.pow(x, a) / a;
            }
            result *= 1 - a * x / (a + 1);
            break;
        case 7:
        default:
            // x is large,
            // Compute Q:
            result = normalised ? regularisedGammaPrefix(a, x) : fullIgammaPrefix(a, x);
            result /= x;
            if (result != 0) {
                result *= incompleteTgammaLargeX(a, x, pol);
            }
            break;
        }

        if (normalised && (result > 1)) {
            result = 1;
        }
        if (invert) {
            final double gam = normalised ? 1 : tgamma(a);
            result = gam - result;
        }

        return result;
    }

    /**
     * Upper gamma fraction.
     * Multiply result by z^a * e^-z to get the full
     * upper incomplete integral.  Divide by tgamma(z)
     * to normalise.
     *
     * @param a Argument a
     * @param z Argument z
     * @param pol Function evaluation policy
     * @return upper gamma fraction
     */
    // This is package-private for testing
    static double upperGammaFraction(double a, double z, Policy pol) {
        final double eps = pol.getEps();
        final int maxIterations = pol.getMaxIterations();

        // This is computing:
        //              1
        // ------------------------------
        // b0 + a1 / (b1 +     a2       )
        //                 -------------
        //                 b2 +    a3
        //                      --------
        //                      b3 + ...
        //
        // b0 = z - a + 1
        // a1 = a - 1
        //
        // It can be done several ways with variations in accuracy.
        // The current implementation has the best accuracy and matches the Boost code.

        final double zma1 = z - a + 1;

        final Supplier<Coefficient> gen = new Supplier<Coefficient>() {
            /** Iteration. */
            private int k;

            @Override
            public Coefficient get() {
                ++k;
                return Coefficient.of(k * (a - k), zma1 + 2.0 * k);
            }
        };

        return 1 / GeneralizedContinuedFraction.value(zma1, gen, eps, maxIterations);
    }

    /**
     * Upper gamma fraction for integer a.
     * Called when {@code a < 30} and {@code -x > LOG_MIN_VALUE}.
     *
     * @param a Argument a (assumed to be small)
     * @param x Argument x
     * @return upper gamma fraction
     */
    private static double finiteGammaQ(double a, double x) {
        //
        // Calculates normalised Q when a is an integer:
        //

        // Update:
        // Assume -x > log min value and no underflow to zero.

        double sum = Math.exp(-x);
        double term = sum;
        for (int n = 1; n < a; ++n) {
            term /= n;
            term *= x;
            sum += term;
        }
        return sum;
    }

    /**
     * Upper gamma fraction for half integer a.
     * Called when {@code a < 30} and {@code -x > LOG_MIN_VALUE}.
     *
     * @param a Argument a (assumed to be small)
     * @param x Argument x
     * @return upper gamma fraction
     */
    private static double finiteHalfGammaQ(double a, double x) {
        //
        // Calculates normalised Q when a is a half-integer:
        //

        // Update:
        // Assume -x > log min value:
        // erfc(sqrt(708)) = erfc(26.6) => erfc has a non-zero value

        double e = BoostErf.erfc(Math.sqrt(x));
        if (a > 1) {
            double term = Math.exp(-x) / Math.sqrt(Math.PI * x);
            term *= x;
            term /= 0.5;
            double sum = term;
            for (int n = 2; n < a; ++n) {
                term /= n - 0.5;
                term *= x;
                sum += term;
            }
            e += sum;
        }
        return e;
    }

    /**
     * Lower gamma series.
     * Multiply result by ((z^a) * (e^-z) / a) to get the full
     * lower incomplete integral. Then divide by tgamma(a)
     * to get the normalised value.
     *
     * @param a Argument a
     * @param z Argument z
     * @param initValue Initial value
     * @param pol Function evaluation policy
     * @return lower gamma series
     */
    // This is package-private for testing
    static double lowerGammaSeries(double a, double z, double initValue, Policy pol) {
        final double eps = pol.getEps();
        final int maxIterations = pol.getMaxIterations();

        // Lower gamma series representation.
        final DoubleSupplier gen = new DoubleSupplier() {
            /** Next result. */
            private double result = 1;
            /** Iteration. */
            private int n;

            @Override
            public double getAsDouble() {
                final double r = result;
                n++;
                result *= z / (a + n);
                return r;
            }
        };

        return BoostTools.kahanSumSeries(gen, eps, maxIterations, initValue);
    }

    /**
     * Upper gamma fraction for very small a.
     *
     * @param a Argument a (assumed to be small)
     * @param x Argument x
     * @param pol Function evaluation policy
     * @param pgam set to value of gamma(a) on output
     * @param invert true to invert the result
     * @return upper gamma fraction
     */
    private static double tgammaSmallUpperPart(double a, double x, Policy pol, double[] pgam, boolean invert) {
        //
        // Compute the full upper fraction (Q) when a is very small:
        //
        double result;
        result = tgamma1pm1(a);

        // Note: Replacing this with tgamma(a) does not reduce error on current test data.

        // gamma(1+z) = z gamma(z)
        // pgam[0] == gamma(a)
        pgam[0] = (result + 1) / a;

        double p = BoostMath.powm1(x, a);
        result -= p;
        result /= a;
        // Removed subtraction of 10 from this value
        final int maxIter = pol.getMaxIterations();
        p += 1;
        final double initValue = invert ? pgam[0] : 0;

        // Series representation for upper fraction when z is small.
        final DoubleSupplier gen = new DoubleSupplier() {
            /** Result term. */
            private double result = -x;
            /** Argument x (this is negated on purpose). */
            private final double z = -x;
            /** Iteration. */
            private int n = 1;

            @Override
            public double getAsDouble() {
                final double r = result / (a + n);
                n++;
                result = result * z / n;
                return r;
            }
        };

        result = -p * BoostTools.kahanSumSeries(gen, pol.getEps(), maxIter, (initValue - result) / p);
        if (invert) {
            result = -result;
        }
        return result;
    }

    /**
     * Calculate power term prefix (z^a)(e^-z) used in the non-normalised
     * incomplete gammas.
     *
     * @param a Argument a
     * @param z Argument z
     * @return incomplete gamma prefix
     */
    static double fullIgammaPrefix(double a, double z) {
        if (z > Double.MAX_VALUE) {
            return 0;
        }
        final double alz = a * Math.log(z);
        final double prefix;

        if (z >= 1) {
            if ((alz < LOG_MAX_VALUE) && (-z > LOG_MIN_VALUE)) {
                prefix = Math.pow(z, a) * Math.exp(-z);
            } else if (a >= 1) {
                prefix = Math.pow(z / Math.exp(z / a), a);
            } else {
                prefix = Math.exp(alz - z);
            }
        } else {
            if (alz > LOG_MIN_VALUE) {
                prefix = Math.pow(z, a) * Math.exp(-z);
            } else {
                // Updated to remove unreachable final branch using Math.exp(alz - z).
                // This branch requires (z / a < LOG_MAX_VALUE) to avoid overflow in exp.
                // At this point:
                // 1. log(z) is negative;
                // 2. a * log(z) <= -708 requires a > -708 / log(z).
                // For any z < 1: -708 / log(z) is > z. Thus a is > z and
                // z / a < LOG_MAX_VALUE is always true.
                prefix = Math.pow(z / Math.exp(z / a), a);
            }
        }
        // Removed overflow check. Return infinity if it occurs.
        return prefix;
    }

    /**
     * Compute (z^a)(e^-z)/tgamma(a).
     * <p>Most of the error occurs in this function.
     *
     * @param a Argument a
     * @param z Argument z
     * @return regularized gamma prefix
     */
    // This is package-private for testing
    static double regularisedGammaPrefix(double a, double z) {
        if (z >= Double.MAX_VALUE) {
            return 0;
        }

        // Update this condition from: a < 1
        if (a <= 1) {
            //
            // We have to treat a < 1 as a special case because our Lanczos
            // approximations are optimised against the factorials with a > 1,
            // and for high precision types especially (128-bit reals for example)
            // very small values of a can give rather erroneous results for gamma
            // unless we do this:
            //
            // Boost todo: is this still required? Lanczos approx should be better now?
            //

            // Update this condition from: z <= LOG_MIN_VALUE
            // Require exp(-z) to not underflow:
            // -z > log(min_value)
            if (-z <= LOG_MIN_VALUE) {
                // Oh dear, have to use logs, should be free of cancellation errors though:
                return Math.exp(a * Math.log(z) - z - lgamma(a));
            }
            // direct calculation, no danger of overflow as gamma(a) < 1/a
            // for small a.
            return Math.pow(z, a) * Math.exp(-z) / tgamma(a);
        }

        // Update to the Boost code.
        // Use some of the logic from fullIgammaPrefix(a, z) to use the direct
        // computation if it is valid. Assuming pow and exp are accurate to 1 ULP it
        // puts most of the error in evaluation of tgamma(a). This is accurate
        // enough that this reduces max error on the current test data.
        //
        // Overflow cases fall-through to the Lanczos approximation that incorporates
        // the pow and exp terms used in the tgamma(a) computation with the terms
        // z^a and e^-z into a single evaluation of pow and exp. See equation 15:
        // https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
        if (a <= MAX_GAMMA_Z) {
            final double alz1 = a * Math.log(z);
            if (z >= 1) {
                if ((alz1 < LOG_MAX_VALUE) && (-z > LOG_MIN_VALUE)) {
                    return Math.pow(z, a) * Math.exp(-z) / tgamma(a);
                }
            } else if (alz1 > LOG_MIN_VALUE) {
                return Math.pow(z, a) * Math.exp(-z) / tgamma(a);
            }
        }

        //
        // For smallish a and x combining the power terms with the Lanczos approximation
        // gives the greatest accuracy
        //

        final double agh = a + Lanczos.GMH;
        double prefix;

        final double factor = Math.sqrt(agh / Math.E) / Lanczos.lanczosSumExpGScaled(a);

        // Update to the Boost code.
        // Lower threshold for large a from 150 to 128 and compute d on demand.
        // See NUMBERS-179.
        if (a > 128) {
            final double d = ((z - a) - Lanczos.GMH) / agh;
            if (Math.abs(d * d * a) <= 100) {
                // special case for large a and a ~ z.
                // When a and x are large, we end up with a very large exponent with a base near one:
                // this will not be computed accurately via the pow function, and taking logs simply
                // leads to cancellation errors.
                prefix = a * SpecialMath.log1pmx(d) + z * -Lanczos.GMH / agh;
                prefix = Math.exp(prefix);
                return prefix * factor;
            }
        }

        //
        // general case.
        // direct computation is most accurate, but use various fallbacks
        // for different parts of the problem domain:
        //

        final double alz = a * Math.log(z / agh);
        final double amz = a - z;
        if ((Math.min(alz, amz) <= LOG_MIN_VALUE) || (Math.max(alz, amz) >= LOG_MAX_VALUE)) {
            final double amza = amz / a;
            if ((Math.min(alz, amz) / 2 > LOG_MIN_VALUE) && (Math.max(alz, amz) / 2 < LOG_MAX_VALUE)) {
                // compute square root of the result and then square it:
                final double sq = Math.pow(z / agh, a / 2) * Math.exp(amz / 2);
                prefix = sq * sq;
            } else if ((Math.min(alz, amz) / 4 > LOG_MIN_VALUE) &&
                    (Math.max(alz, amz) / 4 < LOG_MAX_VALUE) && (z > a)) {
                // compute the 4th root of the result then square it twice:
                final double sq = Math.pow(z / agh, a / 4) * Math.exp(amz / 4);
                prefix = sq * sq;
                prefix *= prefix;
            } else if ((amza > LOG_MIN_VALUE) && (amza < LOG_MAX_VALUE)) {
                prefix = Math.pow((z * Math.exp(amza)) / agh, a);
            } else {
                prefix = Math.exp(alz + amz);
            }
        } else {
            prefix = Math.pow(z / agh, a) * Math.exp(amz);
        }
        prefix *= factor;
        return prefix;
    }

    /**
     * Implements the asymptotic expansions of the incomplete
     * gamma functions P(a, x) and Q(a, x), used when a is large and
     * x ~ a.
     *
     * <p>The primary reference is:
     * <pre>
     * "The Asymptotic Expansion of the Incomplete Gamma Functions"
     * N. M. Temme.
     * Siam J. Math Anal. Vol 10 No 4, July 1979, p757.
     * </pre>
     *
     * <p>A different way of evaluating these expansions,
     * plus a lot of very useful background information is in:
     * <pre>
     * "A Set of Algorithms For the Incomplete Gamma Functions."
     * N. M. Temme.
     * Probability in the Engineering and Informational Sciences,
     * 8, 1994, 291.
     * </pre>
     *
     * <p>An alternative implementation is in:
     * <pre>
     * "Computation of the Incomplete Gamma Function Ratios and their Inverse."
     * A. R. Didonato and A. H. Morris.
     * ACM TOMS, Vol 12, No 4, Dec 1986, p377.
     * </pre>
     *
     * <p>This is a port of the function accurate for 53-bit mantissas
     * (IEEE double precision or 10^-17). To understand the code, refer to Didonato
     * and Morris, from Eq 17 and 18 onwards.
     *
     * <p>The coefficients used here are not taken from Didonato and Morris:
     * the domain over which these expansions are used is slightly different
     * to theirs, and their constants are not quite accurate enough for
     * 128-bit long doubles.  Instead the coefficients were calculated
     * using the methods described by Temme p762 from Eq 3.8 onwards.
     * The values obtained agree with those obtained by Didonato and Morris
     * (at least to the first 30 digits that they provide).
     * At double precision the degrees of polynomial required for full
     * machine precision are close to those recommended to Didonato and Morris,
     * but of course many more terms are needed for larger types.
     *
     * <p>Adapted from {@code boost/math/special_functions/detail/igamma_large.hpp}.
     *
     * @param a the a
     * @param x the x
     * @return the double
     */
    // This is package-private for testing
    static double igammaTemmeLarge(double a, double x) {
        final double sigma = (x - a) / a;
        final double phi = -SpecialMath.log1pmx(sigma);
        final double y = a * phi;
        double z = Math.sqrt(2 * phi);
        if (x < a) {
            z = -z;
        }

        // The following polynomials are evaluated with a loop
        // with Horner's method. Variations exist using
        // a second order Horner's method with an unrolled loop.
        // These are chosen in Boost based on the C++ compiler.
        // For example:
        // boost/math/tools/detail/polynomial_horner1_15.hpp
        // boost/math/tools/detail/polynomial_horner2_15.hpp
        // boost/math/tools/detail/polynomial_horner3_15.hpp

        final double[] workspace = new double[10];

        final double[] C0 = {
            -0.33333333333333333,
            0.083333333333333333,
            -0.014814814814814815,
            0.0011574074074074074,
            0.0003527336860670194,
            -0.00017875514403292181,
            0.39192631785224378e-4,
            -0.21854485106799922e-5,
            -0.185406221071516e-5,
            0.8296711340953086e-6,
            -0.17665952736826079e-6,
            0.67078535434014986e-8,
            0.10261809784240308e-7,
            -0.43820360184533532e-8,
            0.91476995822367902e-9,
        };
        workspace[0] = BoostTools.evaluatePolynomial(C0, z);

        final double[] C1 = {
            -0.0018518518518518519,
            -0.0034722222222222222,
            0.0026455026455026455,
            -0.00099022633744855967,
            0.00020576131687242798,
            -0.40187757201646091e-6,
            -0.18098550334489978e-4,
            0.76491609160811101e-5,
            -0.16120900894563446e-5,
            0.46471278028074343e-8,
            0.1378633446915721e-6,
            -0.5752545603517705e-7,
            0.11951628599778147e-7,
        };
        workspace[1] = BoostTools.evaluatePolynomial(C1, z);

        final double[] C2 = {
            0.0041335978835978836,
            -0.0026813271604938272,
            0.00077160493827160494,
            0.20093878600823045e-5,
            -0.00010736653226365161,
            0.52923448829120125e-4,
            -0.12760635188618728e-4,
            0.34235787340961381e-7,
            0.13721957309062933e-5,
            -0.6298992138380055e-6,
            0.14280614206064242e-6,
        };
        workspace[2] = BoostTools.evaluatePolynomial(C2, z);

        final double[] C3 = {
            0.00064943415637860082,
            0.00022947209362139918,
            -0.00046918949439525571,
            0.00026772063206283885,
            -0.75618016718839764e-4,
            -0.23965051138672967e-6,
            0.11082654115347302e-4,
            -0.56749528269915966e-5,
            0.14230900732435884e-5,
        };
        workspace[3] = BoostTools.evaluatePolynomial(C3, z);

        final double[] C4 = {
            -0.0008618882909167117,
            0.00078403922172006663,
            -0.00029907248030319018,
            -0.14638452578843418e-5,
            0.66414982154651222e-4,
            -0.39683650471794347e-4,
            0.11375726970678419e-4,
        };
        workspace[4] = BoostTools.evaluatePolynomial(C4, z);

        final double[] C5 = {
            -0.00033679855336635815,
            -0.69728137583658578e-4,
            0.00027727532449593921,
            -0.00019932570516188848,
            0.67977804779372078e-4,
            0.1419062920643967e-6,
            -0.13594048189768693e-4,
            0.80184702563342015e-5,
            -0.22914811765080952e-5,
        };
        workspace[5] = BoostTools.evaluatePolynomial(C5, z);

        final double[] C6 = {
            0.00053130793646399222,
            -0.00059216643735369388,
            0.00027087820967180448,
            0.79023532326603279e-6,
            -0.81539693675619688e-4,
            0.56116827531062497e-4,
            -0.18329116582843376e-4,
        };
        workspace[6] = BoostTools.evaluatePolynomial(C6, z);

        final double[] C7 = {
            0.00034436760689237767,
            0.51717909082605922e-4,
            -0.00033493161081142236,
            0.0002812695154763237,
            -0.00010976582244684731,
        };
        workspace[7] = BoostTools.evaluatePolynomial(C7, z);

        final double[] C8 = {
            -0.00065262391859530942,
            0.00083949872067208728,
            -0.00043829709854172101,
        };
        workspace[8] = BoostTools.evaluatePolynomial(C8, z);
        workspace[9] = -0.00059676129019274625;

        double result = BoostTools.evaluatePolynomial(workspace, 1 / a);
        result *= Math.exp(-y) / Math.sqrt(2 * Math.PI * a);
        if (x < a) {
            result = -result;
        }

        result += BoostErf.erfc(Math.sqrt(y)) / 2;

        return result;
    }

    /**
     * Incomplete tgamma for large X.
     *
     * <p>This summation is a source of error as the series starts at 1 and descends to zero.
     * It can have thousands of iterations when a and z are large and close in value.
     *
     * @param a Argument a
     * @param x Argument x
     * @param pol Function evaluation policy
     * @return incomplete tgamma
     */
    // This is package-private for testing
    static double incompleteTgammaLargeX(double a, double x, Policy pol) {
        final double eps = pol.getEps();
        final int maxIterations = pol.getMaxIterations();

        // Asymptotic approximation for large argument, see: https://dlmf.nist.gov/8.11#E2.
        final DoubleSupplier gen = new DoubleSupplier() {
            /** Result term. */
            private double term = 1;
            /** Iteration. */
            private int n;

            @Override
            public double getAsDouble() {
                final double result = term;
                n++;
                term *= (a - n) / x;
                return result;
            }
        };

        return BoostTools.kahanSumSeries(gen, eps, maxIterations);
    }

    /**
     * Return true if the array is not null and has non-zero length.
     *
     * @param array Array
     * @return true if a non-zero length array
     */
    private static boolean nonZeroLength(int[] array) {
        return array != null && array.length != 0;
    }

    /**
     * Ratio of gamma functions.
     *
     * <p>\[ tgamma_ratio(z, delta) = \frac{\Gamma(z)}{\Gamma(z + delta)} \]
     *
     * <p>Adapted from {@code tgamma_delta_ratio_imp}. The use of
     * {@code max_factorial<double>::value == 170} has been replaced with
     * {@code MAX_GAMMA_Z == 171}. This threshold is used when it is possible
     * to call the gamma function without overflow.
     *
     * @param z Argument z
     * @param delta The difference
     * @return gamma ratio
     */
    static double tgammaDeltaRatio(double z, double delta) {
        final double zDelta = z + delta;
        if (Double.isNaN(zDelta)) {
            // One or both arguments are NaN
            return Double.NaN;
        }
        if (z <= 0 || zDelta <= 0) {
            // This isn't very sophisticated, or accurate, but it does work:
            return tgamma(z) / tgamma(zDelta);
        }

        // Note: Directly calling tgamma(z) / tgamma(z + delta) if possible
        // without overflow is not more accurate

        if (Math.rint(delta) == delta) {
            if (delta == 0) {
                return 1;
            }
            //
            // If both z and delta are integers, see if we can just use table lookup
            // of the factorials to get the result:
            //
            if (Math.rint(z) == z &&
                z <= MAX_GAMMA_Z && zDelta <= MAX_GAMMA_Z) {
                return FACTORIAL[(int) z - 1] / FACTORIAL[(int) zDelta - 1];
            }
            if (Math.abs(delta) < 20) {
                //
                // delta is a small integer, we can use a finite product:
                //
                if (delta < 0) {
                    z -= 1;
                    double result = z;
                    for (int d = (int) (delta + 1); d != 0; d++) {
                        z -= 1;
                        result *= z;
                    }
                    return result;
                }
                double result = 1 / z;
                for (int d = (int) (delta - 1); d != 0; d--) {
                    z += 1;
                    result /= z;
                }
                return result;
            }
        }
        return tgammaDeltaRatioImpLanczos(z, delta);
    }

    /**
     * Ratio of gamma functions using Lanczos support.
     *
     * <p>\[ tgamma_delta_ratio(z, delta) = \frac{\Gamma(z)}{\Gamma(z + delta)}
     *
     * <p>Adapted from {@code tgamma_delta_ratio_imp_lanczos}. The use of
     * {@code max_factorial<double>::value == 170} has been replaced with
     * {@code MAX_GAMMA_Z == 171}. This threshold is used when it is possible
     * to use the precomputed factorial table.
     *
     * @param z Argument z
     * @param delta The difference
     * @return gamma ratio
     */
    private static double tgammaDeltaRatioImpLanczos(double z, double delta) {
        if (z < EPSILON) {
            //
            // We get spurious numeric overflow unless we're very careful, this
            // can occur either inside Lanczos::lanczos_sum(z) or in the
            // final combination of terms, to avoid this, split the product up
            // into 2 (or 3) parts:
            //
            // G(z) / G(L) = 1 / (z * G(L)) ; z < eps, L = z + delta = delta
            // z * G(L) = z * G(lim) * (G(L)/G(lim)) ; lim = largest factorial
            //
            if (MAX_GAMMA_Z < delta) {
                double ratio = tgammaDeltaRatioImpLanczos(delta, MAX_GAMMA_Z - delta);
                ratio *= z;
                ratio *= FACTORIAL[MAX_FACTORIAL];
                return 1 / ratio;
            }
            return 1 / (z * tgamma(z + delta));
        }
        final double zgh = z + Lanczos.GMH;
        double result;
        if (z + delta == z) {
            // Here:
            // lanczosSum(z) / lanczosSum(z + delta) == 1

            // Update to the Boost code to remove unreachable code:
            // Given z + delta == z then |delta / z| < EPSILON; and z < zgh
            // assume (abs(delta / zgh) < EPSILON) and remove unreachable
            // else branch which sets result = 1

            // We have:
            // result = exp((0.5 - z) * log1p(delta / zgh));
            // 0.5 - z == -z
            // log1p(delta / zgh) = delta / zgh = delta / z
            // multiplying we get -delta.

            // Note:
            // This can be different from
            // exp((0.5 - z) * log1p(delta / zgh)) when z is small.
            // In this case the result is exp(small) and the result
            // is within 1 ULP of 1.0. This is left as the original
            // Boost method using exp(-delta).

            result = Math.exp(-delta);
        } else {
            if (Math.abs(delta) < 10) {
                result = Math.exp((0.5 - z) * Math.log1p(delta / zgh));
            } else {
                result = Math.pow(zgh / (zgh + delta), z - 0.5);
            }
            // Split the calculation up to avoid spurious overflow:
            result *= Lanczos.lanczosSum(z) / Lanczos.lanczosSum(z + delta);
        }
        result *= Math.pow(Math.E / (zgh + delta), delta);
        return result;
    }

    /**
     * Ratio of gamma functions.
     *
     * <p>\[ tgamma_ratio(x, y) = \frac{\Gamma(x)}{\Gamma(y)}
     *
     * <p>Adapted from {@code tgamma_ratio_imp}. The use of
     * {@code max_factorial<double>::value == 170} has been replaced with
     * {@code MAX_GAMMA_Z == 171}. This threshold is used when it is possible
     * to call the gamma function without overflow.
     *
     * @param x Argument x (must be positive finite)
     * @param y Argument y (must be positive finite)
     * @return gamma ratio (or nan)
     */
    static double tgammaRatio(double x, double y) {
        if (x <= 0 || !Double.isFinite(x) || y <= 0 || !Double.isFinite(y)) {
            return Double.NaN;
        }
        if (x <= Double.MIN_NORMAL) {
            // Special case for denorms...Ugh.
            return TWO_POW_53 * tgammaRatio(x * TWO_POW_53, y);
        }

        if (x <= MAX_GAMMA_Z && y <= MAX_GAMMA_Z) {
            // Rather than subtracting values, lets just call the gamma functions directly:
            return tgamma(x) / tgamma(y);
        }
        double prefix = 1;
        if (x < 1) {
            if (y < 2 * MAX_GAMMA_Z) {
                // We need to sidestep on x as well, otherwise we'll underflow
                // before we get to factor in the prefix term:
                prefix /= x;
                x += 1;
                while (y >= MAX_GAMMA_Z) {
                    y -= 1;
                    prefix /= y;
                }
                return prefix * tgamma(x) / tgamma(y);
            }
            //
            // result is almost certainly going to underflow to zero, try logs just in case:
            //
            return Math.exp(lgamma(x) - lgamma(y));
        }
        if (y < 1) {
            if (x < 2 * MAX_GAMMA_Z) {
                // We need to sidestep on y as well, otherwise we'll overflow
                // before we get to factor in the prefix term:
                prefix *= y;
                y += 1;
                while (x >= MAX_GAMMA_Z) {
                    x -= 1;
                    prefix *= x;
                }
                return prefix * tgamma(x) / tgamma(y);
            }
            //
            // Result will almost certainly overflow, try logs just in case:
            //
            return Math.exp(lgamma(x) - lgamma(y));
        }
        //
        // Regular case, x and y both large and similar in magnitude:
        //
        return tgammaDeltaRatio(x, y - x);
    }
}