InverseTransformContinuousSampler.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
* Distribution sampler that uses the
* <a href="https://en.wikipedia.org/wiki/Inverse_transform_sampling">
* inversion method</a>.
*
* It can be used to sample any distribution that provides access to its
* <em>inverse cumulative probability function</em>.
*
* <p>Sampling uses {@link UniformRandomProvider#nextDouble()}.</p>
*
* <p>Example:</p>
* <pre><code>
* import org.apache.commons.math3.distribution.RealDistribution;
* import org.apache.commons.math3.distribution.ChiSquaredDistribution;
*
* import org.apache.commons.rng.simple.RandomSource;
* import org.apache.commons.rng.sampling.distribution.ContinuousSampler;
* import org.apache.commons.rng.sampling.distribution.InverseTransformContinuousSampler;
* import org.apache.commons.rng.sampling.distribution.ContinuousInverseCumulativeProbabilityFunction;
*
* // Distribution to sample.
* final RealDistribution dist = new ChiSquaredDistribution(9);
* // Create the sampler.
* final ContinuousSampler chiSquareSampler =
* InverseTransformContinuousSampler.of(RandomSource.XO_RO_SHI_RO_128_PP.create(),
* new ContinuousInverseCumulativeProbabilityFunction() {
* public double inverseCumulativeProbability(double p) {
* return dist.inverseCumulativeProbability(p);
* }
* });
*
* // Generate random deviate.
* double random = chiSquareSampler.sample();
* </code></pre>
*
* @since 1.0
*/
public class InverseTransformContinuousSampler
extends SamplerBase
implements SharedStateContinuousSampler {
/** Inverse cumulative probability function. */
private final ContinuousInverseCumulativeProbabilityFunction function;
/** Underlying source of randomness. */
private final UniformRandomProvider rng;
/**
* Create an instance.
*
* @param rng Generator of uniformly distributed random numbers.
* @param function Inverse cumulative probability function.
*/
public InverseTransformContinuousSampler(UniformRandomProvider rng,
ContinuousInverseCumulativeProbabilityFunction function) {
super(null);
this.rng = rng;
this.function = function;
}
/** {@inheritDoc} */
@Override
public double sample() {
return function.inverseCumulativeProbability(rng.nextDouble());
}
/** {@inheritDoc} */
@Override
public String toString() {
return function.toString() + " (inverse method) [" + rng.toString() + "]";
}
/**
* {@inheritDoc}
*
* <p>Note: The new sampler will share the inverse cumulative probability function. This
* must be suitable for concurrent use to ensure thread safety.</p>
*
* @since 1.3
*/
@Override
public SharedStateContinuousSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new InverseTransformContinuousSampler(rng, function);
}
/**
* Create a new inverse-transform continuous sampler.
*
* <p>To use the sampler to
* {@link org.apache.commons.rng.sampling.SharedStateSampler share state} the function must be
* suitable for concurrent use.</p>
*
* @param rng Generator of uniformly distributed random numbers.
* @param function Inverse cumulative probability function.
* @return the sampler
* @see #withUniformRandomProvider(UniformRandomProvider)
* @since 1.3
*/
public static SharedStateContinuousSampler of(UniformRandomProvider rng,
ContinuousInverseCumulativeProbabilityFunction function) {
return new InverseTransformContinuousSampler(rng, function);
}
}