PoissonSampler.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
* Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution</a>.
*
* <ul>
* <li>
* For small means, a Poisson process is simulated using uniform deviates, as described in
* <blockquote>
* Knuth (1969). <i>Seminumerical Algorithms</i>. The Art of Computer Programming,
* Volume 2. Chapter 3.4.1.F.3 Important integer-valued distributions: The Poisson distribution.
* Addison Wesley.
* </blockquote>
* The Poisson process (and hence, the returned value) is bounded by {@code 1000 * mean}.
* </li>
* <li>
* For large means, we use the rejection algorithm described in
* <blockquote>
* Devroye, Luc. (1981). <i>The Computer Generation of Poisson Random Variables</i><br>
* <strong>Computing</strong> vol. 26 pp. 197-207.
* </blockquote>
* </li>
* </ul>
*
* <p>Sampling uses:</p>
*
* <ul>
* <li>{@link UniformRandomProvider#nextDouble()}
* <li>{@link UniformRandomProvider#nextLong()} (large means only)
* </ul>
*
* @since 1.0
*/
public class PoissonSampler
extends SamplerBase
implements SharedStateDiscreteSampler {
/**
* Value for switching sampling algorithm.
*
* <p>Package scope for the {@link PoissonSamplerCache}.
*/
static final double PIVOT = 40;
/** The internal Poisson sampler. */
private final SharedStateDiscreteSampler poissonSamplerDelegate;
/**
* This instance delegates sampling. Use the factory method
* {@link #of(UniformRandomProvider, double)} to create an optimal sampler.
*
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean.
* @throws IllegalArgumentException if {@code mean <= 0} or {@code mean > 0.5 *}
* {@link Integer#MAX_VALUE}.
*/
public PoissonSampler(UniformRandomProvider rng,
double mean) {
// Delegate all work to specialised samplers.
this(of(rng, mean));
}
/**
* @param delegate Poisson sampler.
*/
private PoissonSampler(SharedStateDiscreteSampler delegate) {
super(null);
poissonSamplerDelegate = delegate;
}
/** {@inheritDoc} */
@Override
public int sample() {
return poissonSamplerDelegate.sample();
}
/** {@inheritDoc} */
@Override
public String toString() {
return poissonSamplerDelegate.toString();
}
/**
* {@inheritDoc}
*
* @since 1.3
*/
@Override
public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) {
// Direct return of the optimised sampler
return poissonSamplerDelegate.withUniformRandomProvider(rng);
}
/**
* Creates a new Poisson distribution sampler.
*
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean.
* @return the sampler
* @throws IllegalArgumentException if {@code mean <= 0} or {@code mean > 0.5 *}
* {@link Integer#MAX_VALUE}.
* @since 1.3
*/
public static SharedStateDiscreteSampler of(UniformRandomProvider rng,
double mean) {
// Each sampler should check the input arguments.
return mean < PIVOT ?
SmallMeanPoissonSampler.of(rng, mean) :
LargeMeanPoissonSampler.of(rng, mean);
}
}