001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.statistics.descriptive;
018
019/**
020 * Computes the standard deviation of the available values. The default implementation uses the
021 * following definition of the <em>sample standard deviation</em>:
022 *
023 * <p>\[ \sqrt{ \tfrac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2 } \]
024 *
025 * <p>where \( \overline{x} \) is the sample mean, and \( n \) is the number of samples.
026 *
027 * <ul>
028 *   <li>The result is {@code NaN} if no values are added.
029 *   <li>The result is zero if there is one value in the data set.
030 * </ul>
031 *
032 * <p>The use of the term \( n − 1 \) is called Bessel's correction. Omitting the square root,
033 * this provides an unbiased estimator of the variance of a hypothetical infinite population. If the
034 * {@link #setBiased(boolean) biased} option is enabled the normalisation factor is
035 * changed to \( \frac{1}{n} \) for a biased estimator of the <em>sample variance</em>.
036 * Note however that square root is a concave function and thus introduces negative bias
037 * (by Jensen's inequality), which depends on the distribution, and thus the corrected sample
038 * standard deviation (using Bessel's correction) is less biased, but still biased.
039 *
040 * <p>The implementation uses an exact integer sum to compute the scaled (by \( n \))
041 * sum of squared deviations from the mean; this is normalised by the scaled correction factor.
042 *
043 * <p>\[ \frac {n \times \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}{n \times (n - 1)} \]
044 *
045 * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
046 * This implementation does not check for overflow of the count.
047 *
048 * <p>This class is designed to work with (though does not require)
049 * {@linkplain java.util.stream streams}.
050 *
051 * <p><strong>This implementation is not thread safe.</strong>
052 * If multiple threads access an instance of this class concurrently,
053 * and at least one of the threads invokes the {@link java.util.function.IntConsumer#accept(int) accept} or
054 * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
055 *
056 * <p>However, it is safe to use {@link java.util.function.IntConsumer#accept(int) accept}
057 * and {@link StatisticAccumulator#combine(StatisticResult) combine}
058 * as {@code accumulator} and {@code combiner} functions of
059 * {@link java.util.stream.Collector Collector} on a parallel stream,
060 * because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()}
061 * provides the necessary partitioning, isolation, and merging of results for
062 * safe and efficient parallel execution.
063 *
064 * @see <a href="https://en.wikipedia.org/wiki/Standard_deviation">Standard deviation (Wikipedia)</a>
065 * @see <a href="https://en.wikipedia.org/wiki/Bessel%27s_correction">Bessel&#39;s correction</a>
066 * @see <a href="https://en.wikipedia.org/wiki/Jensen%27s_inequality">Jensen&#39;s inequality</a>
067 * @see IntVariance
068 * @since 1.1
069 */
070public final class IntStandardDeviation implements IntStatistic, StatisticAccumulator<IntStandardDeviation> {
071
072    /** Sum of the squared values. */
073    private final UInt128 sumSq;
074    /** Sum of the values. */
075    private final Int128 sum;
076    /** Count of values that have been added. */
077    private long n;
078
079    /** Flag to control if the statistic is biased, or should use a bias correction. */
080    private boolean biased;
081
082    /**
083     * Create an instance.
084     */
085    private IntStandardDeviation() {
086        this(UInt128.create(), Int128.create(), 0);
087    }
088
089    /**
090     * Create an instance.
091     *
092     * @param sumSq Sum of the squared values.
093     * @param sum Sum of the values.
094     * @param n Count of values that have been added.
095     */
096    private IntStandardDeviation(UInt128 sumSq, Int128 sum, int n) {
097        this.sumSq = sumSq;
098        this.sum = sum;
099        this.n = n;
100    }
101
102    /**
103     * Creates an instance.
104     *
105     * <p>The initial result is {@code NaN}.
106     *
107     * @return {@code IntStandardDeviation} instance.
108     */
109    public static IntStandardDeviation create() {
110        return new IntStandardDeviation();
111    }
112
113    /**
114     * Returns an instance populated using the input {@code values}.
115     *
116     * @param values Values.
117     * @return {@code IntStandardDeviation} instance.
118     */
119    public static IntStandardDeviation of(int... values) {
120        // Small arrays can be processed using the object
121        if (values.length < IntVariance.SMALL_SAMPLE) {
122            final IntStandardDeviation stat = new IntStandardDeviation();
123            for (final int x : values) {
124                stat.accept(x);
125            }
126            return stat;
127        }
128
129        // Arrays can be processed using specialised counts knowing the maximum limit
130        // for an array is 2^31 values.
131        long s = 0;
132        final UInt96 ss = UInt96.create();
133        // Process pairs as we know two maximum value int^2 will not overflow
134        // an unsigned long.
135        final int end = values.length & ~0x1;
136        for (int i = 0; i < end; i += 2) {
137            final long x = values[i];
138            final long y = values[i + 1];
139            s += x + y;
140            ss.addPositive(x * x + y * y);
141        }
142        if (end < values.length) {
143            final long x = values[end];
144            s += x;
145            ss.addPositive(x * x);
146        }
147
148        // Convert
149        return new IntStandardDeviation(UInt128.of(ss), Int128.of(s), values.length);
150    }
151
152    /**
153     * Updates the state of the statistic to reflect the addition of {@code value}.
154     *
155     * @param value Value.
156     */
157    @Override
158    public void accept(int value) {
159        sumSq.addPositive((long) value * value);
160        sum.add(value);
161        n++;
162    }
163
164    /**
165     * Gets the standard deviation of all input values.
166     *
167     * <p>When no values have been added, the result is {@code NaN}.
168     *
169     * @return standard deviation of all values.
170     */
171    @Override
172    public double getAsDouble() {
173        return IntVariance.computeVarianceOrStd(sumSq, sum, n, biased, true);
174    }
175
176    @Override
177    public IntStandardDeviation combine(IntStandardDeviation other) {
178        sumSq.add(other.sumSq);
179        sum.add(other.sum);
180        n += other.n;
181        return this;
182    }
183
184    /**
185     * Sets the value of the biased flag. The default value is {@code false}. The bias
186     * term refers to the computation of the variance; the standard deviation is returned
187     * as the square root of the biased or unbiased <em>sample variance</em>. For further
188     * details see {@link IntVariance#setBiased(boolean) IntVarianceVariance.setBiased}.
189     *
190     * <p>This flag only controls the final computation of the statistic. The value of
191     * this flag will not affect compatibility between instances during a
192     * {@link #combine(IntStandardDeviation) combine} operation.
193     *
194     * @param v Value.
195     * @return {@code this} instance
196     * @see IntVariance#setBiased(boolean)
197     */
198    public IntStandardDeviation setBiased(boolean v) {
199        biased = v;
200        return this;
201    }
202}