001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.statistics.descriptive;
018
019/**
020 * Computes the kurtosis of the available values. The kurtosis is defined as:
021 *
022 * <p>\[ \operatorname{Kurt} = \operatorname{E}\left[ \left(\frac{X-\mu}{\sigma}\right)^4 \right] = \frac{\mu_4}{\sigma^4} \]
023 *
024 * <p>where \( \mu \) is the mean of \( X \), \( \sigma \) is the standard deviation of \( X \),
025 * \( \operatorname{E} \) represents the expectation operator, and \( \mu_4 \) is the fourth
026 * central moment.
027 *
028 * <p>The default implementation uses the following definition of the <em>sample kurtosis</em>:
029 *
030 * <p>\[ G_2 = \frac{k_4}{k_2^2} = \;
031 *       \frac{n-1}{(n-2)\,(n-3)} \left[(n+1)\,\frac{m_4}{m_{2}^2} - 3\,(n-1) \right] \]
032 *
033 * <p>where \( k_4 \) is the unique symmetric unbiased estimator of the fourth cumulant,
034 * \( k_2 \) is the symmetric unbiased estimator of the second cumulant (i.e. the <em>sample variance</em>),
035 * \( m_4 \) is the fourth sample moment about the mean,
036 * \( m_2 \) is the second sample moment about the mean,
037 * \( \overline{x} \) is the sample mean,
038 * and \( n \) is the number of samples.
039 *
040 * <ul>
041 *   <li>The result is {@code NaN} if less than 4 values are added.
042 *   <li>The result is {@code NaN} if any of the values is {@code NaN} or infinite.
043 *   <li>The result is {@code NaN} if the sum of the fourth deviations from the mean is infinite.
044 * </ul>
045 *
046 * <p>The default computation is for the adjusted Fisher–Pearson standardized moment coefficient
047 * \( G_2 \). If the {@link #setBiased(boolean) biased} option is enabled the following equation
048 * applies:
049 *
050 * <p>\[ g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\tfrac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^4}
051 *            {\left[\tfrac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^2 \right]^2} - 3 \]
052 *
053 * <p>In this case the computation only requires 2 values are added (i.e. the result is
054 * {@code NaN} if less than 2 values are added).
055 *
056 * <p>Note that the computation requires division by the second central moment \( m_2 \).
057 * If this is effectively zero then the result is {@code NaN}. This occurs when the value
058 * \( m_2 \) approaches the machine precision of the mean: \( m_2 \le (m_1 \times 10^{-15})^2 \).
059 *
060 * <p>The {@link #accept(double)} method uses a recursive updating algorithm.
061 *
062 * <p>The {@link #of(double...)} method uses a two-pass algorithm, starting with computation
063 * of the mean, and then computing the sum of deviations in a second pass.
064 *
065 * <p>Note that adding values using {@link #accept(double) accept} and then executing
066 * {@link #getAsDouble() getAsDouble} will
067 * sometimes give a different result than executing
068 * {@link #of(double...) of} with the full array of values. The former approach
069 * should only be used when the full array of values is not available.
070 *
071 * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
072 * This implementation does not check for overflow of the count.
073 *
074 * <p>This class is designed to work with (though does not require)
075 * {@linkplain java.util.stream streams}.
076 *
077 * <p><strong>Note that this instance is not synchronized.</strong> If
078 * multiple threads access an instance of this class concurrently, and at least
079 * one of the threads invokes the {@link java.util.function.DoubleConsumer#accept(double) accept} or
080 * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
081 *
082 * <p>However, it is safe to use {@link java.util.function.DoubleConsumer#accept(double) accept}
083 * and {@link StatisticAccumulator#combine(StatisticResult) combine}
084 * as {@code accumulator} and {@code combiner} functions of
085 * {@link java.util.stream.Collector Collector} on a parallel stream,
086 * because the parallel instance of {@link java.util.stream.Stream#collect Stream.collect()}
087 * provides the necessary partitioning, isolation, and merging of results for
088 * safe and efficient parallel execution.
089 *
090 * @see <a href="https://en.wikipedia.org/wiki/Kurtosis">Kurtosis (Wikipedia)</a>
091 * @since 1.1
092 */
093public final class Kurtosis implements DoubleStatistic, StatisticAccumulator<Kurtosis> {
094    /** 2, the length limit where the biased skewness is undefined.
095     * This limit effectively imposes the result m4 / m2^2 = 0 / 0 = NaN when 1 value
096     * has been added. Note that when more samples are added and the variance
097     * approaches zero the result is also returned as NaN. */
098    private static final int LENGTH_TWO = 2;
099    /** 4, the length limit where the kurtosis is undefined. */
100    private static final int LENGTH_FOUR = 4;
101
102    /**
103     * An instance of {@link SumOfFourthDeviations}, which is used to
104     * compute the kurtosis.
105     */
106    private final SumOfFourthDeviations sq;
107
108    /** Flag to control if the statistic is biased, or should use a bias correction. */
109    private boolean biased;
110
111    /**
112     * Create an instance.
113     */
114    private Kurtosis() {
115        this(new SumOfFourthDeviations());
116    }
117
118    /**
119     * Creates an instance with the sum of fourth deviations from the mean.
120     *
121     * @param sq Sum of fourth deviations.
122     */
123    Kurtosis(SumOfFourthDeviations sq) {
124        this.sq = sq;
125    }
126
127    /**
128     * Creates an instance.
129     *
130     * <p>The initial result is {@code NaN}.
131     *
132     * @return {@code Kurtosis} instance.
133     */
134    public static Kurtosis create() {
135        return new Kurtosis();
136    }
137
138    /**
139     * Returns an instance populated using the input {@code values}.
140     *
141     * <p>Note: {@code Kurtosis} computed using {@link #accept(double) accept} may be
142     * different from this instance.
143     *
144     * @param values Values.
145     * @return {@code Kurtosis} instance.
146     */
147    public static Kurtosis of(double... values) {
148        return new Kurtosis(SumOfFourthDeviations.of(values));
149    }
150
151    /**
152     * Returns an instance populated using the input {@code values}.
153     *
154     * <p>Note: {@code Kurtosis} computed using {@link #accept(double) accept} may be
155     * different from this instance.
156     *
157     * @param values Values.
158     * @return {@code Kurtosis} instance.
159     */
160    public static Kurtosis of(int... values) {
161        return new Kurtosis(SumOfFourthDeviations.of(values));
162    }
163
164    /**
165     * Returns an instance populated using the input {@code values}.
166     *
167     * <p>Note: {@code Kurtosis} computed using {@link #accept(double) accept} may be
168     * different from this instance.
169     *
170     * @param values Values.
171     * @return {@code Kurtosis} instance.
172     */
173    public static Kurtosis of(long... values) {
174        return new Kurtosis(SumOfFourthDeviations.of(values));
175    }
176
177    /**
178     * Updates the state of the statistic to reflect the addition of {@code value}.
179     *
180     * @param value Value.
181     */
182    @Override
183    public void accept(double value) {
184        sq.accept(value);
185    }
186
187    /**
188     * Gets the kurtosis of all input values.
189     *
190     * <p>When fewer than 4 values have been added, the result is {@code NaN}.
191     *
192     * @return kurtosis of all values.
193     */
194    @Override
195    public double getAsDouble() {
196        // This method checks the sum of squared or fourth deviations is finite
197        // to provide a consistent NaN when the computation is not possible.
198
199        if (sq.n < (biased ? LENGTH_TWO : LENGTH_FOUR)) {
200            return Double.NaN;
201        }
202        final double x2 = sq.getSumOfSquaredDeviations();
203        if (!Double.isFinite(x2)) {
204            return Double.NaN;
205        }
206        final double x4 = sq.getSumOfFourthDeviations();
207        if (!Double.isFinite(x4)) {
208            return Double.NaN;
209        }
210        // Avoid a divide by zero; for a negligible variance return NaN.
211        // Note: Commons Math returns zero if variance is < 1e-19.
212        final double m2 = x2 / sq.n;
213        if (Statistics.zeroVariance(sq.getFirstMoment(), m2)) {
214            return Double.NaN;
215        }
216        final double m4 = x4 / sq.n;
217        if (biased) {
218            return m4 / (m2 * m2) - 3;
219        }
220        final double n = sq.n;
221        return ((n * n - 1) * m4 / (m2 * m2) - 3 * (n - 1) * (n - 1)) / ((n - 2) * (n - 3));
222    }
223
224    @Override
225    public Kurtosis combine(Kurtosis other) {
226        sq.combine(other.sq);
227        return this;
228    }
229
230    /**
231     * Sets the value of the biased flag. The default value is {@code false}.
232     * See {@link Kurtosis} for details on the computing algorithm.
233     *
234     * <p>This flag only controls the final computation of the statistic. The value of this flag
235     * will not affect compatibility between instances during a {@link #combine(Kurtosis) combine}
236     * operation.
237     *
238     * @param v Value.
239     * @return {@code this} instance
240     */
241    public Kurtosis setBiased(boolean v) {
242        biased = v;
243        return this;
244    }
245}