001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.statistics.descriptive; 018 019/** 020 * Computes the standard deviation of the available values. The default implementations uses 021 * the following definition of the <em>sample standard deviation</em>: 022 * 023 * <p>\[ \sqrt{ \tfrac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2 } \] 024 * 025 * <p>where \( \overline{x} \) is the sample mean, and \( n \) is the number of samples. 026 * 027 * <ul> 028 * <li>The result is {@code NaN} if no values are added. 029 * <li>The result is {@code NaN} if any of the values is {@code NaN} or infinite. 030 * <li>The result is {@code NaN} if the sum of the squared deviations from the mean is infinite. 031 * <li>The result is zero if there is one finite value in the data set. 032 * </ul> 033 * 034 * <p>The use of the term \( n − 1 \) is called Bessel's correction. Omitting the square root, 035 * this provides an unbiased estimator of the variance of a hypothetical infinite population. If the 036 * {@link #setBiased(boolean) biased} option is enabled the normalisation factor is 037 * changed to \( \frac{1}{n} \) for a biased estimator of the <em>sample variance</em>. 038 * Note however that square root is a concave function and thus introduces negative bias 039 * (by Jensen's inequality), which depends on the distribution, and thus the corrected sample 040 * standard deviation (using Bessel's correction) is less biased, but still biased. 041 * 042 * <p>The {@link #accept(double)} method uses a recursive updating algorithm based on West's 043 * algorithm (see Chan and Lewis (1979)). 044 * 045 * <p>The {@link #of(double...)} method uses the corrected two-pass algorithm from 046 * Chan <i>et al</i>, (1983). 047 * 048 * <p>Note that adding values using {@link #accept(double) accept} and then executing 049 * {@link #getAsDouble() getAsDouble} will 050 * sometimes give a different, less accurate, result than executing 051 * {@link #of(double...) of} with the full array of values. The former approach 052 * should only be used when the full array of values is not available. 053 * 054 * <p>Supports up to 2<sup>63</sup> (exclusive) observations. 055 * This implementation does not check for overflow of the count. 056 * 057 * <p>This class is designed to work with (though does not require) 058 * {@linkplain java.util.stream streams}. 059 * 060 * <p><strong>Note that this instance is not synchronized.</strong> If 061 * multiple threads access an instance of this class concurrently, and at least 062 * one of the threads invokes the {@link java.util.function.DoubleConsumer#accept(double) accept} or 063 * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally. 064 * 065 * <p>However, it is safe to use {@link java.util.function.DoubleConsumer#accept(double) accept} 066 * and {@link StatisticAccumulator#combine(StatisticResult) combine} 067 * as {@code accumulator} and {@code combiner} functions of 068 * {@link java.util.stream.Collector Collector} on a parallel stream, 069 * because the parallel instance of {@link java.util.stream.Stream#collect Stream.collect()} 070 * provides the necessary partitioning, isolation, and merging of results for 071 * safe and efficient parallel execution. 072 * 073 * <p>References: 074 * <ul> 075 * <li>Chan and Lewis (1979) 076 * Computing standard deviations: accuracy. 077 * Communications of the ACM, 22, 526-531. 078 * <a href="http://doi.acm.org/10.1145/359146.359152">doi: 10.1145/359146.359152</a> 079 * <li>Chan, Golub and Levesque (1983) 080 * Algorithms for Computing the Sample Variance: Analysis and Recommendations. 081 * American Statistician, 37, 242-247. 082 * <a href="https://doi.org/10.2307/2683386">doi: 10.2307/2683386</a> 083 * </ul> 084 * 085 * @see <a href="https://en.wikipedia.org/wiki/Standard_deviation">Standard deviation (Wikipedia)</a> 086 * @see <a href="https://en.wikipedia.org/wiki/Bessel%27s_correction">Bessel's correction</a> 087 * @see <a href="https://en.wikipedia.org/wiki/Jensen%27s_inequality">Jensen's inequality</a> 088 * @see Variance 089 * @since 1.1 090 */ 091public final class StandardDeviation implements DoubleStatistic, StatisticAccumulator<StandardDeviation> { 092 093 /** 094 * An instance of {@link SumOfSquaredDeviations}, which is used to 095 * compute the standard deviation. 096 */ 097 private final SumOfSquaredDeviations ss; 098 099 /** Flag to control if the statistic is biased, or should use a bias correction. */ 100 private boolean biased; 101 102 /** 103 * Create an instance. 104 */ 105 private StandardDeviation() { 106 this(new SumOfSquaredDeviations()); 107 } 108 109 /** 110 * Creates an instance with the sum of squared deviations from the mean. 111 * 112 * @param ss Sum of squared deviations. 113 */ 114 StandardDeviation(SumOfSquaredDeviations ss) { 115 this.ss = ss; 116 } 117 118 /** 119 * Creates an instance. 120 * 121 * <p>The initial result is {@code NaN}. 122 * 123 * @return {@code StandardDeviation} instance. 124 */ 125 public static StandardDeviation create() { 126 return new StandardDeviation(); 127 } 128 129 /** 130 * Returns an instance populated using the input {@code values}. 131 * 132 * <p>Note: {@code StandardDeviation} computed using {@link #accept(double) accept} may be 133 * different from this standard deviation. 134 * 135 * <p>See {@link StandardDeviation} for details on the computing algorithm. 136 * 137 * @param values Values. 138 * @return {@code StandardDeviation} instance. 139 */ 140 public static StandardDeviation of(double... values) { 141 return new StandardDeviation(SumOfSquaredDeviations.of(values)); 142 } 143 144 /** 145 * Updates the state of the statistic to reflect the addition of {@code value}. 146 * 147 * @param value Value. 148 */ 149 @Override 150 public void accept(double value) { 151 ss.accept(value); 152 } 153 154 /** 155 * Gets the standard deviation of all input values. 156 * 157 * <p>When no values have been added, the result is {@code NaN}. 158 * 159 * @return standard deviation of all values. 160 */ 161 @Override 162 public double getAsDouble() { 163 // This method checks the sum of squared is finite 164 // to provide a consistent NaN when the computation is not possible. 165 // Note: The SS checks for n=0 and returns NaN. 166 final double m2 = ss.getSumOfSquaredDeviations(); 167 if (!Double.isFinite(m2)) { 168 return Double.NaN; 169 } 170 final long n = ss.n; 171 // Avoid a divide by zero 172 if (n == 1) { 173 return 0; 174 } 175 return biased ? Math.sqrt(m2 / n) : Math.sqrt(m2 / (n - 1)); 176 } 177 178 @Override 179 public StandardDeviation combine(StandardDeviation other) { 180 ss.combine(other.ss); 181 return this; 182 } 183 184 /** 185 * Sets the value of the biased flag. The default value is {@code false}. The bias 186 * term refers to the computation of the variance; the standard deviation is returned 187 * as the square root of the biased or unbiased <em>sample variance</em>. For further 188 * details see {@link Variance#setBiased(boolean) Variance.setBiased}. 189 * 190 * <p>This flag only controls the final computation of the statistic. The value of 191 * this flag will not affect compatibility between instances during a 192 * {@link #combine(StandardDeviation) combine} operation. 193 * 194 * @param v Value. 195 * @return {@code this} instance 196 * @see Variance#setBiased(boolean) 197 */ 198 public StandardDeviation setBiased(boolean v) { 199 biased = v; 200 return this; 201 } 202}