001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.statistics.distribution; 018 019import java.util.function.IntToDoubleFunction; 020import org.apache.commons.rng.UniformRandomProvider; 021import org.apache.commons.rng.sampling.distribution.GeometricSampler; 022 023/** 024 * Implementation of the geometric distribution. 025 * 026 * <p>The probability mass function of \( X \) is: 027 * 028 * <p>\[ f(k; p) = (1-p)^k \, p \] 029 * 030 * <p>for \( p \in (0, 1] \) the probability of success and 031 * \( k \in \{0, 1, 2, \dots\} \) the number of failures. 032 * 033 * <p>This parameterization is used to model the number of failures until 034 * the first success. 035 * 036 * @see <a href="https://en.wikipedia.org/wiki/Geometric_distribution">Geometric distribution (Wikipedia)</a> 037 * @see <a href="https://mathworld.wolfram.com/GeometricDistribution.html">Geometric distribution (MathWorld)</a> 038 */ 039public final class GeometricDistribution extends AbstractDiscreteDistribution { 040 /** 1/2. */ 041 private static final double HALF = 0.5; 042 043 /** The probability of success. */ 044 private final double probabilityOfSuccess; 045 /** {@code log(p)} where p is the probability of success. */ 046 private final double logProbabilityOfSuccess; 047 /** {@code log(1 - p)} where p is the probability of success. */ 048 private final double log1mProbabilityOfSuccess; 049 /** Value of survival probability for x=0. 050 * Used in the survival functions. Equal to (1 - probability of success). */ 051 private final double sf0; 052 /** Implementation of PMF(x). Assumes that {@code x > 0}. */ 053 private final IntToDoubleFunction pmf; 054 055 /** 056 * @param p Probability of success. 057 */ 058 private GeometricDistribution(double p) { 059 probabilityOfSuccess = p; 060 logProbabilityOfSuccess = Math.log(p); 061 log1mProbabilityOfSuccess = Math.log1p(-p); 062 sf0 = 1 - p; 063 064 // Choose the PMF implementation. 065 // When p >= 0.5 then 1 - p is exact and using the power function 066 // is consistently more accurate than the use of the exponential function. 067 // When p -> 0 then the exponential function avoids large error propagation 068 // of the power function used with an inexact 1 - p. 069 // Also compute the survival probability for use when x=0. 070 if (p >= HALF) { 071 pmf = x -> Math.pow(sf0, x) * probabilityOfSuccess; 072 } else { 073 pmf = x -> Math.exp(log1mProbabilityOfSuccess * x) * probabilityOfSuccess; 074 } 075 } 076 077 /** 078 * Creates a geometric distribution. 079 * 080 * @param p Probability of success. 081 * @return the geometric distribution 082 * @throws IllegalArgumentException if {@code p <= 0} or {@code p > 1}. 083 */ 084 public static GeometricDistribution of(double p) { 085 if (p <= 0 || p > 1) { 086 throw new DistributionException(DistributionException.INVALID_NON_ZERO_PROBABILITY, p); 087 } 088 return new GeometricDistribution(p); 089 } 090 091 /** 092 * Gets the probability of success parameter of this distribution. 093 * 094 * @return the probability of success. 095 */ 096 public double getProbabilityOfSuccess() { 097 return probabilityOfSuccess; 098 } 099 100 /** {@inheritDoc} */ 101 @Override 102 public double probability(int x) { 103 if (x <= 0) { 104 // Special case of x=0 exploiting cancellation. 105 return x == 0 ? probabilityOfSuccess : 0; 106 } 107 return pmf.applyAsDouble(x); 108 } 109 110 /** {@inheritDoc} */ 111 @Override 112 public double logProbability(int x) { 113 if (x <= 0) { 114 // Special case of x=0 exploiting cancellation. 115 return x == 0 ? logProbabilityOfSuccess : Double.NEGATIVE_INFINITY; 116 } 117 return x * log1mProbabilityOfSuccess + logProbabilityOfSuccess; 118 } 119 120 /** {@inheritDoc} */ 121 @Override 122 public double cumulativeProbability(int x) { 123 if (x <= 0) { 124 // Note: CDF(x=0) = PDF(x=0) = probabilityOfSuccess 125 return x == 0 ? probabilityOfSuccess : 0; 126 } 127 // Note: Double addition avoids overflow. This may compute a value less than 1.0 128 // for the max integer value when p is very small. 129 return -Math.expm1(log1mProbabilityOfSuccess * (x + 1.0)); 130 } 131 132 /** {@inheritDoc} */ 133 @Override 134 public double survivalProbability(int x) { 135 if (x <= 0) { 136 // Note: SF(x=0) = 1 - PDF(x=0) = 1 - probabilityOfSuccess 137 // Use a pre-computed value to avoid cancellation when probabilityOfSuccess -> 0 138 return x == 0 ? sf0 : 1; 139 } 140 // Note: Double addition avoids overflow. This may compute a value greater than 0.0 141 // for the max integer value when p is very small. 142 return Math.exp(log1mProbabilityOfSuccess * (x + 1.0)); 143 } 144 145 /** {@inheritDoc} */ 146 @Override 147 public int inverseCumulativeProbability(double p) { 148 ArgumentUtils.checkProbability(p); 149 if (p == 1) { 150 return getSupportUpperBound(); 151 } 152 if (p <= probabilityOfSuccess) { 153 return 0; 154 } 155 // p > probabilityOfSuccess 156 // => log(1-p) < log(1-probabilityOfSuccess); 157 // Both terms are negative as probabilityOfSuccess > 0. 158 // This should be lower bounded to (2 - 1) = 1 159 int x = (int) (Math.ceil(Math.log1p(-p) / log1mProbabilityOfSuccess) - 1); 160 161 // Correct rounding errors. 162 // This ensures x == icdf(cdf(x)) 163 164 if (cumulativeProbability(x - 1) >= p) { 165 // No checks for x=0. 166 // If x=0; cdf(-1) = 0 and the condition is false as p>0 at this point. 167 x--; 168 } else if (cumulativeProbability(x) < p && x < Integer.MAX_VALUE) { 169 // The supported upper bound is max_value here as probabilityOfSuccess != 1 170 x++; 171 } 172 173 return x; 174 } 175 176 /** {@inheritDoc} */ 177 @Override 178 public int inverseSurvivalProbability(double p) { 179 ArgumentUtils.checkProbability(p); 180 if (p == 0) { 181 return getSupportUpperBound(); 182 } 183 if (p >= sf0) { 184 return 0; 185 } 186 187 // p < 1 - probabilityOfSuccess 188 // Inversion as for icdf using log(p) in place of log1p(-p) 189 int x = (int) (Math.ceil(Math.log(p) / log1mProbabilityOfSuccess) - 1); 190 191 // Correct rounding errors. 192 // This ensures x == isf(sf(x)) 193 194 if (survivalProbability(x - 1) <= p) { 195 // No checks for x=0 196 // If x=0; sf(-1) = 1 and the condition is false as p<1 at this point. 197 x--; 198 } else if (survivalProbability(x) > p && x < Integer.MAX_VALUE) { 199 // The supported upper bound is max_value here as probabilityOfSuccess != 1 200 x++; 201 } 202 203 return x; 204 } 205 206 /** 207 * {@inheritDoc} 208 * 209 * <p>For probability parameter \( p \), the mean is: 210 * 211 * <p>\[ \frac{1 - p}{p} \] 212 */ 213 @Override 214 public double getMean() { 215 return (1 - probabilityOfSuccess) / probabilityOfSuccess; 216 } 217 218 /** 219 * {@inheritDoc} 220 * 221 * <p>For probability parameter \( p \), the variance is: 222 * 223 * <p>\[ \frac{1 - p}{p^2} \] 224 */ 225 @Override 226 public double getVariance() { 227 return (1 - probabilityOfSuccess) / (probabilityOfSuccess * probabilityOfSuccess); 228 } 229 230 /** 231 * {@inheritDoc} 232 * 233 * <p>The lower bound of the support is always 0. 234 * 235 * @return 0. 236 */ 237 @Override 238 public int getSupportLowerBound() { 239 return 0; 240 } 241 242 /** 243 * {@inheritDoc} 244 * 245 * <p>The upper bound of the support is positive infinity except for the 246 * probability parameter {@code p = 1.0}. 247 * 248 * @return {@link Integer#MAX_VALUE} or 0. 249 */ 250 @Override 251 public int getSupportUpperBound() { 252 return probabilityOfSuccess < 1 ? Integer.MAX_VALUE : 0; 253 } 254 255 /** {@inheritDoc} */ 256 @Override 257 public Sampler createSampler(UniformRandomProvider rng) { 258 return GeometricSampler.of(rng, probabilityOfSuccess)::sample; 259 } 260}