001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.statistics.distribution; 018 019/** 020 * Implementation of the Laplace distribution. 021 * 022 * <p>The probability density function of \( X \) is: 023 * 024 * <p>\[ f(x; \mu, b) = \frac{1}{2b} \exp \left( -\frac{|x-\mu|}{b} \right) \] 025 * 026 * <p>for \( \mu \) the location, 027 * \( b > 0 \) the scale, and 028 * \( x \in (-\infty, \infty) \). 029 * 030 * @see <a href="https://en.wikipedia.org/wiki/Laplace_distribution">Laplace distribution (Wikipedia)</a> 031 * @see <a href="https://mathworld.wolfram.com/LaplaceDistribution.html">Laplace distribution (MathWorld)</a> 032 */ 033public final class LaplaceDistribution extends AbstractContinuousDistribution { 034 /** The location parameter. */ 035 private final double mu; 036 /** The scale parameter. */ 037 private final double beta; 038 /** log(2 * beta). */ 039 private final double log2beta; 040 041 /** 042 * @param mu Location parameter. 043 * @param beta Scale parameter (must be positive). 044 */ 045 private LaplaceDistribution(double mu, 046 double beta) { 047 this.mu = mu; 048 this.beta = beta; 049 log2beta = Math.log(2.0 * beta); 050 } 051 052 /** 053 * Creates a Laplace distribution. 054 * 055 * @param mu Location parameter. 056 * @param beta Scale parameter (must be positive). 057 * @return the distribution 058 * @throws IllegalArgumentException if {@code beta <= 0} 059 */ 060 public static LaplaceDistribution of(double mu, 061 double beta) { 062 if (beta <= 0) { 063 throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, beta); 064 } 065 return new LaplaceDistribution(mu, beta); 066 } 067 068 /** 069 * Gets the location parameter of this distribution. 070 * 071 * @return the location parameter. 072 */ 073 public double getLocation() { 074 return mu; 075 } 076 077 /** 078 * Gets the scale parameter of this distribution. 079 * 080 * @return the scale parameter. 081 */ 082 public double getScale() { 083 return beta; 084 } 085 086 /** {@inheritDoc} */ 087 @Override 088 public double density(double x) { 089 return Math.exp(-Math.abs(x - mu) / beta) / (2.0 * beta); 090 } 091 092 /** {@inheritDoc} */ 093 @Override 094 public double logDensity(double x) { 095 return -Math.abs(x - mu) / beta - log2beta; 096 } 097 098 /** {@inheritDoc} */ 099 @Override 100 public double cumulativeProbability(double x) { 101 if (x <= mu) { 102 return 0.5 * Math.exp((x - mu) / beta); 103 } 104 return 1.0 - 0.5 * Math.exp((mu - x) / beta); 105 } 106 107 /** {@inheritDoc} */ 108 @Override 109 public double survivalProbability(double x) { 110 if (x <= mu) { 111 return 1.0 - 0.5 * Math.exp((x - mu) / beta); 112 } 113 return 0.5 * Math.exp((mu - x) / beta); 114 } 115 116 /** {@inheritDoc} */ 117 @Override 118 public double inverseCumulativeProbability(double p) { 119 ArgumentUtils.checkProbability(p); 120 if (p == 0) { 121 return Double.NEGATIVE_INFINITY; 122 } else if (p == 1) { 123 return Double.POSITIVE_INFINITY; 124 } 125 final double x = (p > 0.5) ? -Math.log(2.0 * (1.0 - p)) : Math.log(2.0 * p); 126 return mu + beta * x; 127 } 128 129 /** {@inheritDoc} */ 130 @Override 131 public double inverseSurvivalProbability(double p) { 132 ArgumentUtils.checkProbability(p); 133 if (p == 1) { 134 return Double.NEGATIVE_INFINITY; 135 } else if (p == 0) { 136 return Double.POSITIVE_INFINITY; 137 } 138 // By symmetry: x = -icdf(p); then transform back by the scale and location 139 final double x = (p > 0.5) ? Math.log(2.0 * (1.0 - p)) : -Math.log(2.0 * p); 140 return mu + beta * x; 141 } 142 143 /** 144 * {@inheritDoc} 145 * 146 * <p>The mean is equal to the {@linkplain #getLocation() location}. 147 */ 148 @Override 149 public double getMean() { 150 return getLocation(); 151 } 152 153 /** 154 * {@inheritDoc} 155 * 156 * <p>For scale parameter \( b \), the variance is \( 2 b^2 \). 157 */ 158 @Override 159 public double getVariance() { 160 return 2.0 * beta * beta; 161 } 162 163 /** 164 * {@inheritDoc} 165 * 166 * <p>The lower bound of the support is always negative infinity. 167 * 168 * @return {@linkplain Double#NEGATIVE_INFINITY negative infinity}. 169 */ 170 @Override 171 public double getSupportLowerBound() { 172 return Double.NEGATIVE_INFINITY; 173 } 174 175 /** 176 * {@inheritDoc} 177 * 178 * <p>The upper bound of the support is always positive infinity. 179 * 180 * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}. 181 */ 182 @Override 183 public double getSupportUpperBound() { 184 return Double.POSITIVE_INFINITY; 185 } 186 187 /** {@inheritDoc} */ 188 @Override 189 double getMedian() { 190 // Overridden for the probability(double, double) method. 191 // This is intentionally not a public method. 192 return mu; 193 } 194}