Class JaroWinklerDistance
java.lang.Object
org.apache.commons.text.similarity.JaroWinklerDistance
- All Implemented Interfaces:
BiFunction<CharSequence,
,CharSequence, Double> EditDistance<Double>
,ObjectSimilarityScore<CharSequence,
,Double> SimilarityScore<Double>
Measures the Jaro-Winkler distance of two character sequences.
It is the complementary of Jaro-Winkler similarity.
- Since:
- 1.0
-
Field Summary
Modifier and TypeFieldDescriptionstatic final int
Deprecated.Deprecated as of 1.7. -
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionapply
(CharSequence left, CharSequence right) Computes the Jaro Winkler Distance between two character sequences.<E> Double
apply
(SimilarityInput<E> left, SimilarityInput<E> right) Computes the Jaro Winkler Distance between two character sequences.protected static int[]
matches
(CharSequence first, CharSequence second) Deprecated.Deprecated as of 1.7.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface java.util.function.BiFunction
andThen
-
Field Details
-
INDEX_NOT_FOUND
Deprecated.Deprecated as of 1.7. This constant will be removed in 2.0.- See Also:
-
-
Constructor Details
-
JaroWinklerDistance
public JaroWinklerDistance()
-
-
Method Details
-
matches
Deprecated.Deprecated as of 1.7. This method will be removed in 2.0, and moved to a Jaro Winkler similarity class. TODO see TEXT-104.Computes the Jaro-Winkler string matches, half transpositions, prefix array.- Parameters:
first
- the first string to be matched.second
- the second string to be matched.- Returns:
- array containing: matches, half transpositions, and prefix
-
apply
Computes the Jaro Winkler Distance between two character sequences.distance.apply(null, null) = IllegalArgumentException distance.apply("foo", null) = IllegalArgumentException distance.apply(null, "foo") = IllegalArgumentException distance.apply("", "") = 0.0 distance.apply("foo", "foo") = 0.0 distance.apply("foo", "foo ") = 0.06 distance.apply("foo", "foo ") = 0.09 distance.apply("foo", " foo ") = 0.13 distance.apply("foo", " foo") = 0.49 distance.apply("", "a") = 1.0 distance.apply("aaapppp", "") = 1.0 distance.apply("frog", "fog") = 0.07 distance.apply("fly", "ant") = 1.0 distance.apply("elephant", "hippo") = 0.56 distance.apply("hippo", "elephant") = 0.56 distance.apply("hippo", "zzzzzzzz") = 1.0 distance.apply("hello", "hallo") = 0.12 distance.apply("ABC Corporation", "ABC Corp") = 0.09 distance.apply("D N H Enterprises Inc", "D & H Enterprises, Inc.") = 0.05 distance.apply("My Gym Children's Fitness Center", "My Gym. Childrens Fitness") = 0.08 distance.apply("PENNSYLVANIA", "PENNCISYLVNIA") = 0.12
- Specified by:
apply
in interfaceBiFunction<CharSequence,
CharSequence, Double> - Specified by:
apply
in interfaceObjectSimilarityScore<CharSequence,
Double> - Specified by:
apply
in interfaceSimilarityScore<Double>
- Parameters:
left
- the first input, must not be null.right
- the second input, must not be null.- Returns:
- result distance.
- Throws:
IllegalArgumentException
- if either CharSequence input isnull
-
apply
Computes the Jaro Winkler Distance between two character sequences.distance.apply(null, null) = IllegalArgumentException distance.apply("foo", null) = IllegalArgumentException distance.apply(null, "foo") = IllegalArgumentException distance.apply("", "") = 0.0 distance.apply("foo", "foo") = 0.0 distance.apply("foo", "foo ") = 0.06 distance.apply("foo", "foo ") = 0.09 distance.apply("foo", " foo ") = 0.13 distance.apply("foo", " foo") = 0.49 distance.apply("", "a") = 1.0 distance.apply("aaapppp", "") = 1.0 distance.apply("frog", "fog") = 0.07 distance.apply("fly", "ant") = 1.0 distance.apply("elephant", "hippo") = 0.56 distance.apply("hippo", "elephant") = 0.56 distance.apply("hippo", "zzzzzzzz") = 1.0 distance.apply("hello", "hallo") = 0.12 distance.apply("ABC Corporation", "ABC Corp") = 0.09 distance.apply("D N H Enterprises Inc", "D & H Enterprises, Inc.") = 0.05 distance.apply("My Gym Children's Fitness Center", "My Gym. Childrens Fitness") = 0.08 distance.apply("PENNSYLVANIA", "PENNCISYLVNIA") = 0.12
- Type Parameters:
E
- The type of similarity score unit.- Parameters:
left
- the first input, must not be null.right
- the second input, must not be null.- Returns:
- result distance.
- Throws:
IllegalArgumentException
- if either CharSequence input isnull
.- Since:
- 1.13.0
-