001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.text.similarity; 018 019/** 020 * A similarity algorithm indicating the length of the longest common subsequence between two strings. 021 * 022 * <p> 023 * The Longest common subsequence algorithm returns the length of the longest subsequence that two strings have in 024 * common. Two strings that are entirely different, return a value of 0, and two strings that return a value 025 * of the commonly shared length implies that the strings are completely the same in value and position. 026 * <em>Note.</em> Generally this algorithm is fairly inefficient, as for length <em>m</em>, <em>n</em> of the input 027 * {@code CharSequence}'s {@code left} and {@code right} respectively, the runtime of the 028 * algorithm is <em>O(m*n)</em>. 029 * </p> 030 * 031 * <p> 032 * As of version 1.10, a more space-efficient of the algorithm is implemented. The new algorithm has linear space 033 * complexity instead of quadratic. However, time complexity is still quadratic in the size of input strings. 034 * </p> 035 * 036 * <p> 037 * The implementation is based on Hirschberg's Longest Commons Substring algorithm (cited below). 038 * </p> 039 * 040 * <p>For further reading see:</p> 041 * <ul> 042 * <li> 043 * Lothaire, M. <em>Applied combinatorics on words</em>. New York: Cambridge U Press, 2005. <strong>12-13</strong> 044 * </li> 045 * <li> 046 * D. S. Hirschberg, "A linear space algorithm for computing maximal common subsequences," CACM, 1975, pp. 341--343. 047 * </li> 048 * </ul> 049 * 050 * @since 1.0 051 */ 052public class LongestCommonSubsequence implements SimilarityScore<Integer> { 053 054 /** 055 * Singleton instance. 056 */ 057 static final LongestCommonSubsequence INSTANCE = new LongestCommonSubsequence(); 058 059 /** 060 * An implementation of "ALG B" from Hirschberg's CACM '71 paper. 061 * Assuming the first input sequence is of size {@code m} and the second input sequence is of size 062 * {@code n}, this method returns the last row of the dynamic programming (DP) table when calculating 063 * the LCS of the two sequences in <em>O(m*n)</em> time and <em>O(n)</em> space. 064 * The last element of the returned array, is the size of the LCS of the two input sequences. 065 * 066 * @param left first input sequence. 067 * @param right second input sequence. 068 * @return last row of the dynamic-programming (DP) table for calculating the LCS of {@code left} and {@code right} 069 * @since 1.10.0 070 */ 071 private static int[] algorithmB(final CharSequence left, final CharSequence right) { 072 final int m = left.length(); 073 final int n = right.length(); 074 // Creating an array for storing two rows of DP table 075 final int[][] dpRows = new int[2][1 + n]; 076 for (int i = 1; i <= m; i++) { 077 // K(0, j) <- K(1, j) [j = 0...n], as per the paper: 078 // Since we have references in Java, we can swap references instead of literal copying. 079 // We could also use a "binary index" using modulus operator, but directly swapping the 080 // two rows helps readability and keeps the code consistent with the algorithm description 081 // in the paper. 082 final int[] temp = dpRows[0]; 083 dpRows[0] = dpRows[1]; 084 dpRows[1] = temp; 085 086 for (int j = 1; j <= n; j++) { 087 if (left.charAt(i - 1) == right.charAt(j - 1)) { 088 dpRows[1][j] = dpRows[0][j - 1] + 1; 089 } else { 090 dpRows[1][j] = Math.max(dpRows[1][j - 1], dpRows[0][j]); 091 } 092 } 093 } 094 // LL(j) <- K(1, j) [j=0...n], as per the paper: 095 // We don't need literal copying of the array, we can just return the reference 096 return dpRows[1]; 097 } 098 099 /** 100 * An implementation of "ALG C" from Hirschberg's CACM '71 paper. 101 * Assuming the first input sequence is of size {@code m} and the second input sequence is of size 102 * {@code n}, this method returns the Longest Common Subsequence (LCS) of the two sequences in 103 * <em>O(m*n)</em> time and <em>O(m+n)</em> space. 104 * 105 * @param left first input sequence. 106 * @param right second input sequence. 107 * @return the LCS of {@code left} and {@code right} 108 * @since 1.10.0 109 */ 110 private static String algorithmC(final CharSequence left, final CharSequence right) { 111 final int m = left.length(); 112 final int n = right.length(); 113 final StringBuilder out = new StringBuilder(); 114 if (m == 1) { // Handle trivial cases, as per the paper 115 final char leftCh = left.charAt(0); 116 for (int j = 0; j < n; j++) { 117 if (leftCh == right.charAt(j)) { 118 out.append(leftCh); 119 break; 120 } 121 } 122 } else if (n > 0 && m > 1) { 123 final int mid = m / 2; // Find the middle point 124 final CharSequence leftFirstPart = left.subSequence(0, mid); 125 final CharSequence leftSecondPart = left.subSequence(mid, m); 126 // Step 3 of the algorithm: two calls to Algorithm B 127 final int[] l1 = algorithmB(leftFirstPart, right); 128 final int[] l2 = algorithmB(reverse(leftSecondPart), reverse(right)); 129 // Find k, as per the Step 4 of the algorithm 130 int k = 0; 131 int t = 0; 132 for (int j = 0; j <= n; j++) { 133 final int s = l1[j] + l2[n - j]; 134 if (t < s) { 135 t = s; 136 k = j; 137 } 138 } 139 // Step 5: solve simpler problems, recursively 140 out.append(algorithmC(leftFirstPart, right.subSequence(0, k))); 141 out.append(algorithmC(leftSecondPart, right.subSequence(k, n))); 142 } 143 144 return out.toString(); 145 } 146 147 // An auxiliary method for CharSequence reversal 148 private static String reverse(final CharSequence s) { 149 return new StringBuilder(s).reverse().toString(); 150 } 151 152 /** 153 * Creates a new instance. 154 */ 155 public LongestCommonSubsequence() { 156 // empty 157 } 158 159 /** 160 * Computes the longest common subsequence similarity score of two {@code CharSequence}'s passed as 161 * input. 162 * 163 * <p> 164 * This method implements a more efficient version of LCS algorithm which has quadratic time and 165 * linear space complexity. 166 * </p> 167 * 168 * <p> 169 * This method is based on newly implemented {@link #algorithmB(CharSequence, CharSequence)}. 170 * An evaluation using JMH revealed that this method is almost two times faster than its previous version. 171 * </p> 172 * 173 * @param left first character sequence 174 * @param right second character sequence 175 * @return length of the longest common subsequence of {@code left} and {@code right} 176 * @throws IllegalArgumentException if either String input {@code null} 177 */ 178 @Override 179 public Integer apply(final CharSequence left, final CharSequence right) { 180 // Quick return for invalid inputs 181 if (left == null || right == null) { 182 throw new IllegalArgumentException("Inputs must not be null"); 183 } 184 // Find lengths of two strings 185 final int leftSz = left.length(); 186 final int rightSz = right.length(); 187 // Check if we can avoid calling algorithmB which involves heap space allocation 188 if (leftSz == 0 || rightSz == 0) { 189 return 0; 190 } 191 // Check if we can save even more space 192 if (leftSz < rightSz) { 193 return algorithmB(right, left)[leftSz]; 194 } 195 return algorithmB(left, right)[rightSz]; 196 } 197 198 /** 199 * Computes the longest common subsequence between the two {@code CharSequence}'s passed as input. 200 * 201 * <p> 202 * Note, a substring and subsequence are not necessarily the same thing. Indeed, {@code abcxyzqrs} and 203 * {@code xyzghfm} have both the same common substring and subsequence, namely {@code xyz}. However, 204 * {@code axbyczqrs} and {@code abcxyzqtv} have the longest common subsequence {@code xyzq} because a 205 * subsequence need not have adjacent characters. 206 * </p> 207 * 208 * <p> 209 * For reference, we give the definition of a subsequence for the reader: a <em>subsequence</em> is a sequence that 210 * can be derived from another sequence by deleting some elements without changing the order of the remaining 211 * elements. 212 * </p> 213 * 214 * @param left first character sequence 215 * @param right second character sequence 216 * @return the longest common subsequence found 217 * @throws IllegalArgumentException if either String input {@code null} 218 * @deprecated Deprecated as of 1.2 due to a typo in the method name. 219 * Use {@link #longestCommonSubsequence(CharSequence, CharSequence)} instead. 220 * This method will be removed in 2.0. 221 */ 222 @Deprecated 223 public CharSequence logestCommonSubsequence(final CharSequence left, final CharSequence right) { 224 return longestCommonSubsequence(left, right); 225 } 226 227 /** 228 * Computes the longest common subsequence between the two {@code CharSequence}'s passed as 229 * input. 230 * 231 * <p> 232 * This method implements a more efficient version of LCS algorithm which although has quadratic time, it 233 * has linear space complexity. 234 * </p> 235 * 236 * 237 * <p> 238 * Note, a substring and subsequence are not necessarily the same thing. Indeed, {@code abcxyzqrs} and 239 * {@code xyzghfm} have both the same common substring and subsequence, namely {@code xyz}. However, 240 * {@code axbyczqrs} and {@code abcxyzqtv} have the longest common subsequence {@code xyzq} because a 241 * subsequence need not have adjacent characters. 242 * </p> 243 * 244 * <p> 245 * For reference, we give the definition of a subsequence for the reader: a <em>subsequence</em> is a sequence that 246 * can be derived from another sequence by deleting some elements without changing the order of the remaining 247 * elements. 248 * </p> 249 * 250 * @param left first character sequence 251 * @param right second character sequence 252 * @return the longest common subsequence found 253 * @throws IllegalArgumentException if either String input {@code null} 254 * @since 1.2 255 */ 256 public CharSequence longestCommonSubsequence(final CharSequence left, final CharSequence right) { 257 // Quick return 258 if (left == null || right == null) { 259 throw new IllegalArgumentException("Inputs must not be null"); 260 } 261 // Find lengths of two strings 262 final int leftSz = left.length(); 263 final int rightSz = right.length(); 264 265 // Check if we can avoid calling algorithmC which involves heap space allocation 266 if (leftSz == 0 || rightSz == 0) { 267 return ""; 268 } 269 270 // Check if we can save even more space 271 if (leftSz < rightSz) { 272 return algorithmC(right, left); 273 } 274 return algorithmC(left, right); 275 } 276 277 /** 278 * Computes the lcsLengthArray for the sake of doing the actual lcs calculation. This is the 279 * dynamic programming portion of the algorithm, and is the reason for the runtime complexity being 280 * O(m*n), where m=left.length() and n=right.length(). 281 * 282 * @param left first character sequence 283 * @param right second character sequence 284 * @return lcsLengthArray 285 * @deprecated Deprecated as of 1.10. A more efficient implementation for calculating LCS is now available. 286 * Use {@link #longestCommonSubsequence(CharSequence, CharSequence)} instead to directly calculate the LCS. 287 * This method will be removed in 2.0. 288 */ 289 @Deprecated 290 public int[][] longestCommonSubstringLengthArray(final CharSequence left, final CharSequence right) { 291 final int[][] lcsLengthArray = new int[left.length() + 1][right.length() + 1]; 292 for (int i = 0; i < left.length(); i++) { 293 for (int j = 0; j < right.length(); j++) { 294 if (i == 0) { 295 lcsLengthArray[i][j] = 0; 296 } 297 if (j == 0) { 298 lcsLengthArray[i][j] = 0; 299 } 300 if (left.charAt(i) == right.charAt(j)) { 301 lcsLengthArray[i + 1][j + 1] = lcsLengthArray[i][j] + 1; 302 } else { 303 lcsLengthArray[i + 1][j + 1] = Math.max(lcsLengthArray[i + 1][j], lcsLengthArray[i][j + 1]); 304 } 305 } 306 } 307 return lcsLengthArray; 308 } 309 310}