View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  /*
19   * Copyright (c) 2008-2020, Hazelcast, Inc. All Rights Reserved.
20   */
21  
22  package org.apache.commons.collections4.map;
23  
24  /*
25   * Written by Doug Lea with assistance from members of JCP JSR-166
26   * Expert Group and released to the public domain, as explained at
27   * http://creativecommons.org/licenses/publicdomain
28   */
29  
30  import java.lang.ref.Reference;
31  import java.lang.ref.ReferenceQueue;
32  import java.lang.ref.SoftReference;
33  import java.lang.ref.WeakReference;
34  import java.util.AbstractCollection;
35  import java.util.AbstractMap;
36  import java.util.AbstractSet;
37  import java.util.Arrays;
38  import java.util.Collection;
39  import java.util.ConcurrentModificationException;
40  import java.util.EnumSet;
41  import java.util.Enumeration;
42  import java.util.HashMap;
43  import java.util.Hashtable;
44  import java.util.IdentityHashMap;
45  import java.util.Iterator;
46  import java.util.Map;
47  import java.util.NoSuchElementException;
48  import java.util.Objects;
49  import java.util.Set;
50  import java.util.concurrent.ConcurrentMap;
51  import java.util.concurrent.locks.ReentrantLock;
52  import java.util.function.BiFunction;
53  import java.util.function.Function;
54  import java.util.function.Supplier;
55  
56  /**
57   * An advanced hash map supporting configurable garbage collection semantics of keys and values, optional referential-equality, full concurrency of retrievals,
58   * and adjustable expected concurrency for updates.
59   * <p>
60   * This map is designed around specific advanced use-cases. If there is any doubt whether this map is for you, you most likely should be using
61   * {@link java.util.concurrent.ConcurrentHashMap} instead.
62   * </p>
63   * <p>
64   * This map supports strong, weak, and soft keys and values. By default, keys are weak, and values are strong. Such a configuration offers similar behavior to
65   * {@link java.util.WeakHashMap}, entries of this map are periodically removed once their corresponding keys are no longer referenced outside of this map. In
66   * other words, this map will not prevent a key from being discarded by the garbage collector. Once a key has been discarded by the collector, the corresponding
67   * entry is no longer visible to this map; however, the entry may occupy space until a future map operation decides to reclaim it. For this reason, summary
68   * functions such as {@code size} and {@code isEmpty} might return a value greater than the observed number of entries. In order to support a high level of
69   * concurrency, stale entries are only reclaimed during blocking (usually mutating) operations.
70   * </p>
71   * <p>
72   * Enabling soft keys allows entries in this map to remain until their space is absolutely needed by the garbage collector. This is unlike weak keys which can
73   * be reclaimed as soon as they are no longer referenced by a normal strong reference. The primary use case for soft keys is a cache, which ideally occupies
74   * memory that is not in use for as long as possible.
75   * </p>
76   * <p>
77   * By default, values are held using a normal strong reference. This provides the commonly desired guarantee that a value will always have at least the same
78   * life-span as its key. For this reason, care should be taken to ensure that a value never refers, either directly or indirectly, to its key, thereby
79   * preventing reclamation. If this is unavoidable, then it is recommended to use the same reference type in use for the key. However, it should be noted that
80   * non-strong values may disappear before their corresponding key.
81   * </p>
82   * <p>
83   * While this map does allow the use of both strong keys and values, it is recommended you use {@link java.util.concurrent.ConcurrentHashMap} for such a
84   * configuration, since it is optimized for that case.
85   * </p>
86   * <p>
87   * Just like {@link java.util.concurrent.ConcurrentHashMap}, this class obeys the same functional specification as {@link Hashtable}, and includes versions of
88   * methods corresponding to each method of {@code Hashtable}. However, even though all operations are thread-safe, retrieval operations do <em>not</em> entail
89   * locking, and there is <em>not</em> any support for locking the entire map in a way that prevents all access. This class is fully interoperable with
90   * {@code Hashtable} in programs that rely on its thread safety but not on its synchronization details.
91   * </p>
92   * <p>
93   * Retrieval operations (including {@code get}) generally do not block, so they may overlap with update operations (including {@code put} and {@code remove}).
94   * Retrievals reflect the results of the most recently <em>completed</em> update operations holding upon their onset. For aggregate operations such as
95   * {@code putAll} and {@code clear}, concurrent retrievals may reflect insertion or removal of only some entries. Similarly, Iterators and Enumerations return
96   * elements reflecting the state of the hash map at some point at or since the creation of the iterator/enumeration. They do <em>not</em> throw
97   * {@link ConcurrentModificationException}. However, iterators are designed to be used by only one thread at a time.
98   * </p>
99   * <p>
100  * The allowed concurrency among update operations is guided by the optional {@code concurrencyLevel} constructor argument (default
101  * {@value #DEFAULT_CONCURRENCY_LEVEL}), which is used as a hint for internal sizing. The map is internally partitioned to try to permit the indicated number of
102  * concurrent updates without contention. Because placement in hash tables is essentially random, the actual concurrency will vary. Ideally, you should choose a
103  * value to accommodate as many threads as will ever concurrently modify the map. Using a significantly higher value than you need can waste space and time, and
104  * a significantly lower value can lead to thread contention. But overestimates and underestimates within an order of magnitude do not usually have much
105  * noticeable impact. A value of one is appropriate when it is known that only one thread will modify and all others will only read. Also, resizing this or any
106  * other kind of hash map is a relatively slow operation, so, when possible, it is a good idea that you provide estimates of expected map sizes in constructors.
107  * </p>
108  * <p>
109  * This class and its views and iterators implement all of the <em>optional</em> methods of the {@link Map} and {@link Iterator} interfaces.
110  * </p>
111  * <p>
112  * Like {@link Hashtable} but unlike {@link HashMap}, this class does <em>not</em> allow {@code null} to be used as a key or value.
113  * </p>
114  * <p>
115  * Provenance: Copied and edited from Apache Groovy git master at commit 77dc80a7512ceb2168b1bc866c3d0c69b002fe11; via Doug Lea, Jason T. Greene, with
116  * assistance from members of JCP JSR-166, and Hazelcast.
117  * </p>
118  *
119  * @param <K> the type of keys maintained by this map.
120  * @param <V> the type of mapped values.
121  */
122 public class ConcurrentReferenceHashMap<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V> {
123 
124     /**
125      * Builds new ConcurrentReferenceHashMap instances.
126      * <p>
127      * By default, keys are weak, and values are strong.
128      * </p>
129      * <p>
130      * The default values are:
131      * </p>
132      * <ul>
133      * <li>concurrency level: {@value #DEFAULT_CONCURRENCY_LEVEL}</li>
134      * <li>initial capacity: {@value #DEFAULT_INITIAL_CAPACITY}</li>
135      * <li>key reference type: {@link ReferenceType#WEAK}</li>
136      * <li>load factor: {@value #DEFAULT_LOAD_FACTOR}</li>
137      * <li>options: {@code null}</li>
138      * <li>source map: {@code null}</li>
139      * <li>value reference type: {@link ReferenceType#STRONG}</li>
140      * </ul>
141      *
142      * @param <K> the type of keys.
143      * @param <V> the type of values.
144      */
145     public static class Builder<K, V> implements Supplier<ConcurrentReferenceHashMap<K, V>> {
146 
147         private static final Map<?, ?> DEFAULT_SOURCE_MAP = null;
148 
149         private int initialCapacity = DEFAULT_INITIAL_CAPACITY;
150         private float loadFactor = DEFAULT_LOAD_FACTOR;
151         private int concurrencyLevel = DEFAULT_CONCURRENCY_LEVEL;
152         private ReferenceType keyReferenceType = DEFAULT_KEY_TYPE;
153         private ReferenceType valueReferenceType = DEFAULT_VALUE_TYPE;
154         private EnumSet<Option> options = DEFAULT_OPTIONS;
155         @SuppressWarnings("unchecked")
156         private Map<? extends K, ? extends V> sourceMap = (Map<? extends K, ? extends V>) DEFAULT_SOURCE_MAP;
157 
158         /**
159          * Builds a new {@link ConcurrentReferenceHashMap}.
160          * <p>
161          * By default, keys are weak, and values are strong.
162          * </p>
163          * <p>
164          * The default values are:
165          * </p>
166          * <ul>
167          * <li>concurrency level: {@value #DEFAULT_CONCURRENCY_LEVEL}</li>
168          * <li>initial capacity: {@value #DEFAULT_INITIAL_CAPACITY}</li>
169          * <li>key reference type: {@link ReferenceType#WEAK}</li>
170          * <li>load factor: {@value #DEFAULT_LOAD_FACTOR}</li>
171          * <li>options: {@code null}</li>
172          * <li>source map: {@code null}</li>
173          * <li>value reference type: {@link ReferenceType#STRONG}</li>
174          * </ul>
175          */
176         @Override
177         public ConcurrentReferenceHashMap<K, V> get() {
178             final ConcurrentReferenceHashMap<K, V> map = new ConcurrentReferenceHashMap<>(initialCapacity, loadFactor, concurrencyLevel, keyReferenceType,
179                     valueReferenceType, options);
180             if (sourceMap != null) {
181                 map.putAll(sourceMap);
182             }
183             return map;
184         }
185 
186         /**
187          * Sets the estimated number of concurrently updating threads. The implementation performs internal sizing to try to accommodate this many threads.
188          *
189          * @param concurrencyLevel estimated number of concurrently updating threads
190          * @return this instance.
191          */
192         public Builder<K, V> setConcurrencyLevel(final int concurrencyLevel) {
193             this.concurrencyLevel = concurrencyLevel;
194             return this;
195         }
196 
197         /**
198          * Sets the initial capacity. The implementation performs internal sizing to accommodate this many elements.
199          *
200          * @param initialCapacity the initial capacity.
201          * @return this instance.
202          */
203         public Builder<K, V> setInitialCapacity(final int initialCapacity) {
204             this.initialCapacity = initialCapacity;
205             return this;
206         }
207 
208         /**
209          * Sets the reference type to use for keys.
210          *
211          * @param keyReferenceType the reference type to use for keys.
212          * @return this instance.
213          */
214         public Builder<K, V> setKeyReferenceType(final ReferenceType keyReferenceType) {
215             this.keyReferenceType = keyReferenceType;
216             return this;
217         }
218 
219         /**
220          * Sets the load factor factor, used to control resizing. Resizing may be performed when the average number of elements per bin exceeds this threshold.
221          *
222          * @param loadFactor the load factor factor, used to control resizing
223          * @return this instance.
224          */
225         public Builder<K, V> setLoadFactor(final float loadFactor) {
226             this.loadFactor = loadFactor;
227             return this;
228         }
229 
230         /**
231          * Sets the behavioral options.
232          *
233          * @param options the behavioral options.
234          * @return this instance.
235          */
236         public Builder<K, V> setOptions(final EnumSet<Option> options) {
237             this.options = options;
238             return this;
239         }
240 
241         /**
242          * Sets the values to load into a new map.
243          *
244          * @param sourceMap the values to load into a new map.
245          * @return this instance.
246          */
247         public Builder<K, V> setSourceMap(final Map<? extends K, ? extends V> sourceMap) {
248             this.sourceMap = sourceMap;
249             return this;
250         }
251 
252         /**
253          * Sets the reference type to use for values.
254          *
255          * @param valueReferenceType the reference type to use for values.
256          * @return this instance.
257          */
258         public Builder<K, V> setValueReferenceType(final ReferenceType valueReferenceType) {
259             this.valueReferenceType = valueReferenceType;
260             return this;
261         }
262 
263         /**
264          * Sets key reference type to {@link ReferenceType#SOFT}.
265          *
266          * @return this instance.
267          */
268         public Builder<K, V> softKeys() {
269             setKeyReferenceType(ReferenceType.SOFT);
270             return this;
271         }
272 
273         /**
274          * Sets value reference type to {@link ReferenceType#SOFT}.
275          *
276          * @return this instance.
277          */
278         public Builder<K, V> softValues() {
279             setValueReferenceType(ReferenceType.SOFT);
280             return this;
281         }
282 
283         /**
284          * Sets key reference type to {@link ReferenceType#STRONG}.
285          *
286          * @return this instance.
287          */
288         public Builder<K, V> strongKeys() {
289             setKeyReferenceType(ReferenceType.STRONG);
290             return this;
291         }
292 
293         /**
294          * Sets value reference type to {@link ReferenceType#STRONG}.
295          *
296          * @return this instance.
297          */
298         public Builder<K, V> strongValues() {
299             setValueReferenceType(ReferenceType.STRONG);
300             return this;
301         }
302 
303         /**
304          * Sets key reference type to {@link ReferenceType#WEAK}.
305          *
306          * @return this instance.
307          */
308         public Builder<K, V> weakKeys() {
309             setKeyReferenceType(ReferenceType.WEAK);
310             return this;
311         }
312 
313         /**
314          * Sets value reference type to {@link ReferenceType#WEAK}.
315          *
316          * @return this instance.
317          */
318         public Builder<K, V> weakValues() {
319             setValueReferenceType(ReferenceType.WEAK);
320             return this;
321         }
322 
323     }
324 
325     /**
326      * The basic strategy is to subdivide the table among Segments, each of which itself is a concurrently readable hash table.
327      */
328     private final class CachedEntryIterator extends HashIterator implements Iterator<Entry<K, V>> {
329         private final InitializableEntry<K, V> entry = new InitializableEntry<>();
330 
331         @Override
332         public Entry<K, V> next() {
333             final HashEntry<K, V> e = super.nextEntry();
334             return entry.init(e.key(), e.value());
335         }
336     }
337 
338     private final class EntryIterator extends HashIterator implements Iterator<Entry<K, V>> {
339         @Override
340         public Entry<K, V> next() {
341             final HashEntry<K, V> e = super.nextEntry();
342             return new WriteThroughEntry(e.key(), e.value());
343         }
344     }
345 
346     private final class EntrySet extends AbstractSet<Entry<K, V>> {
347 
348         private final boolean cached;
349 
350         private EntrySet(final boolean cached) {
351             this.cached = cached;
352         }
353 
354         @Override
355         public void clear() {
356             ConcurrentReferenceHashMap.this.clear();
357         }
358 
359         @Override
360         public boolean contains(final Object o) {
361             if (!(o instanceof Map.Entry)) {
362                 return false;
363             }
364             final V v = ConcurrentReferenceHashMap.this.get(((Entry<?, ?>) o).getKey());
365             return Objects.equals(v, ((Entry<?, ?>) o).getValue());
366         }
367 
368         @Override
369         public boolean isEmpty() {
370             return ConcurrentReferenceHashMap.this.isEmpty();
371         }
372 
373         @Override
374         public Iterator<Entry<K, V>> iterator() {
375             return cached ? new CachedEntryIterator() : new EntryIterator();
376         }
377 
378         @Override
379         public boolean remove(final Object o) {
380             if (!(o instanceof Map.Entry)) {
381                 return false;
382             }
383             final Entry<?, ?> e = (Entry<?, ?>) o;
384             return ConcurrentReferenceHashMap.this.remove(e.getKey(), e.getValue());
385         }
386 
387         @Override
388         public int size() {
389             return ConcurrentReferenceHashMap.this.size();
390         }
391     }
392 
393     /**
394      * ConcurrentReferenceHashMap list entry. Note that this is never exported out as a user-visible Map.Entry.
395      * <p>
396      * Because the value field is volatile, not final, it is legal wrt the Java Memory Model for an unsynchronized reader to see null instead of initial value
397      * when read via a data race. Although a reordering leading to this is not likely to ever actually occur, the Segment.readValueUnderLock method is used as a
398      * backup in case a null (pre-initialized) value is ever seen in an unsynchronized access method.
399      * </p>
400      */
401     private static final class HashEntry<K, V> {
402 
403         @SuppressWarnings("unchecked")
404         static <K, V> HashEntry<K, V>[] newArray(final int i) {
405             return new HashEntry[i];
406         }
407 
408         private final Object keyRef;
409         private final int hash;
410         private volatile Object valueRef;
411         private final HashEntry<K, V> next;
412 
413         HashEntry(final K key, final int hash, final HashEntry<K, V> next, final V value, final ReferenceType keyType, final ReferenceType valueType,
414                 final ReferenceQueue<Object> refQueue) {
415             this.hash = hash;
416             this.next = next;
417             this.keyRef = newKeyReference(key, keyType, refQueue);
418             this.valueRef = newValueReference(value, valueType, refQueue);
419         }
420 
421         @SuppressWarnings("unchecked")
422         V dereferenceValue(final Object value) {
423             if (value instanceof KeyReference) {
424                 return ((Reference<V>) value).get();
425             }
426             return (V) value;
427         }
428 
429         @SuppressWarnings("unchecked")
430         K key() {
431             if (keyRef instanceof KeyReference) {
432                 return ((Reference<K>) keyRef).get();
433             }
434             return (K) keyRef;
435         }
436 
437         Object newKeyReference(final K key, final ReferenceType keyType, final ReferenceQueue<Object> refQueue) {
438             if (keyType == ReferenceType.WEAK) {
439                 return new WeakKeyReference<>(key, hash, refQueue);
440             }
441             if (keyType == ReferenceType.SOFT) {
442                 return new SoftKeyReference<>(key, hash, refQueue);
443             }
444 
445             return key;
446         }
447 
448         Object newValueReference(final V value, final ReferenceType valueType, final ReferenceQueue<Object> refQueue) {
449             if (valueType == ReferenceType.WEAK) {
450                 return new WeakValueReference<>(value, keyRef, hash, refQueue);
451             }
452             if (valueType == ReferenceType.SOFT) {
453                 return new SoftValueReference<>(value, keyRef, hash, refQueue);
454             }
455 
456             return value;
457         }
458 
459         void setValue(final V value, final ReferenceType valueType, final ReferenceQueue<Object> refQueue) {
460             this.valueRef = newValueReference(value, valueType, refQueue);
461         }
462 
463         V value() {
464             return dereferenceValue(valueRef);
465         }
466     }
467 
468     private abstract class HashIterator {
469         private int nextSegmentIndex;
470         private int nextTableIndex;
471         private HashEntry<K, V>[] currentTable;
472         private HashEntry<K, V> nextEntry;
473         private HashEntry<K, V> lastReturned;
474         // Strong reference to weak key (prevents gc)
475         private K currentKey;
476 
477         private HashIterator() {
478             nextSegmentIndex = segments.length - 1;
479             nextTableIndex = -1;
480             advance();
481         }
482 
483         final void advance() {
484             if (nextEntry != null && (nextEntry = nextEntry.next) != null) {
485                 return;
486             }
487             while (nextTableIndex >= 0) {
488                 if ((nextEntry = currentTable[nextTableIndex--]) != null) {
489                     return;
490                 }
491             }
492             while (nextSegmentIndex >= 0) {
493                 final Segment<K, V> seg = segments[nextSegmentIndex--];
494                 if (seg.count != 0) {
495                     currentTable = seg.table;
496                     for (int j = currentTable.length - 1; j >= 0; --j) {
497                         if ((nextEntry = currentTable[j]) != null) {
498                             nextTableIndex = j - 1;
499                             return;
500                         }
501                     }
502                 }
503             }
504         }
505 
506         public boolean hasMoreElements() {
507             return hasNext();
508         }
509 
510         public boolean hasNext() {
511             while (nextEntry != null) {
512                 if (nextEntry.key() != null) {
513                     return true;
514                 }
515                 advance();
516             }
517             return false;
518         }
519 
520         HashEntry<K, V> nextEntry() {
521             do {
522                 if (nextEntry == null) {
523                     throw new NoSuchElementException();
524                 }
525                 lastReturned = nextEntry;
526                 currentKey = lastReturned.key();
527                 advance();
528             } while /* Skip GC'd keys */ (currentKey == null);
529             return lastReturned;
530         }
531 
532         public void remove() {
533             if (lastReturned == null) {
534                 throw new IllegalStateException();
535             }
536             ConcurrentReferenceHashMap.this.remove(currentKey);
537             lastReturned = null;
538         }
539     }
540 
541     private static final class InitializableEntry<K, V> implements Entry<K, V> {
542         private K key;
543         private V value;
544 
545         @Override
546         public K getKey() {
547             return key;
548         }
549 
550         @Override
551         public V getValue() {
552             return value;
553         }
554 
555         public Entry<K, V> init(final K key, final V value) {
556             this.key = key;
557             this.value = value;
558             return this;
559         }
560 
561         @Override
562         public V setValue(final V value) {
563             throw new UnsupportedOperationException();
564         }
565     }
566 
567     private final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
568         @Override
569         public K next() {
570             return super.nextEntry().key();
571         }
572 
573         @Override
574         public K nextElement() {
575             return super.nextEntry().key();
576         }
577     }
578 
579     private interface KeyReference {
580         int keyHash();
581 
582         Object keyRef();
583     }
584 
585     private final class KeySet extends AbstractSet<K> {
586         @Override
587         public void clear() {
588             ConcurrentReferenceHashMap.this.clear();
589         }
590 
591         @Override
592         public boolean contains(final Object o) {
593             return ConcurrentReferenceHashMap.this.containsKey(o);
594         }
595 
596         @Override
597         public boolean isEmpty() {
598             return ConcurrentReferenceHashMap.this.isEmpty();
599         }
600 
601         @Override
602         public Iterator<K> iterator() {
603             return new KeyIterator();
604         }
605 
606         @Override
607         public boolean remove(final Object o) {
608             return ConcurrentReferenceHashMap.this.remove(o) != null;
609         }
610 
611         @Override
612         public int size() {
613             return ConcurrentReferenceHashMap.this.size();
614         }
615     }
616 
617     /**
618      * Behavior-changing configuration options for the map
619      */
620     public enum Option {
621         /**
622          * Indicates that referential-equality (== instead of .equals()) should be used when locating keys. This offers similar behavior to
623          * {@link IdentityHashMap}
624          */
625         IDENTITY_COMPARISONS
626     }
627 
628     /**
629      * An option specifying which Java reference type should be used to refer to a key and/or value.
630      */
631     public enum ReferenceType {
632         /**
633          * Indicates a normal Java strong reference should be used
634          */
635         STRONG,
636         /**
637          * Indicates a {@link WeakReference} should be used
638          */
639         WEAK,
640         /**
641          * Indicates a {@link SoftReference} should be used
642          */
643         SOFT
644     }
645 
646     /**
647      * Segments are specialized versions of hash tables. This subclasses from ReentrantLock opportunistically, just to simplify some locking and avoid separate
648      * construction.
649      * <p>
650      * Segments maintain a table of entry lists that are ALWAYS kept in a consistent state, so they can be read without locking. Next fields of nodes are
651      * immutable (final). All list additions are performed at the front of each bin. This makes it easy to check changes, and also fast to traverse. When nodes
652      * would otherwise be changed, new nodes are created to replace them. This works well for hash tables since the bin lists tend to be short. (The average
653      * length is less than two for the default load factor threshold.)
654      * </p>
655      * <p>
656      * Read operations can thus proceed without locking, but rely on selected uses of volatiles to ensure that completed write operations performed by other
657      * threads are noticed. For most purposes, the "count" field, tracking the number of elements, serves as that volatile variable ensuring visibility. This is
658      * convenient because this field needs to be read in many read operations anyway:
659      * </p>
660      * <ul>
661      * <li>All (unsynchronized) read operations must first read the "count" field, and should not look at table entries if it is 0.</li>
662      * <li>All (synchronized) write operations should write to the "count" field after structurally changing any bin. The operations must not take any action
663      * that could even momentarily cause a concurrent read operation to see inconsistent data. This is made easier by the nature of the read operations in Map.
664      * For example, no operation can reveal that the table has grown but the threshold has not yet been updated, so there are no atomicity requirements for this
665      * with respect to reads.</li>
666      * </ul>
667      * <p>
668      * As a guide, all critical volatile reads and writes to the count field are marked in code comments.
669      * </p>
670      *
671      * @param <K> the type of keys maintained by this Segment.
672      * @param <V> the type of mapped values.
673      */
674     private static final class Segment<K, V> extends ReentrantLock {
675 
676         private static final long serialVersionUID = 1L;
677 
678         @SuppressWarnings("unchecked")
679         static <K, V> Segment<K, V>[] newArray(final int i) {
680             return new Segment[i];
681         }
682 
683         /**
684          * The number of elements in this segment's region.
685          */
686         // @SuppressFBWarnings(value = "SE_TRANSIENT_FIELD_NOT_RESTORED", justification =
687         // "I trust Doug Lea's technical decision")
688         private transient volatile int count;
689 
690         /**
691          * Number of updates that alter the size of the table. This is used during bulk-read methods to make sure they see a consistent snapshot: If modCounts
692          * change during a traversal of segments computing size or checking containsValue, then we might have an inconsistent view of state so (usually) we must
693          * retry.
694          */
695         // @SuppressFBWarnings(value = "SE_TRANSIENT_FIELD_NOT_RESTORED", justification =
696         // "I trust Doug Lea's technical decision")
697         private transient int modCount;
698 
699         /**
700          * The table is rehashed when its size exceeds this threshold. (The value of this field is always <code>(int)(capacity *
701          * loadFactor)</code>.)
702          */
703         private transient int threshold;
704 
705         /**
706          * The per-segment table.
707          */
708         private transient volatile HashEntry<K, V>[] table;
709 
710         /**
711          * The load factor for the hash table. Even though this value is same for all segments, it is replicated to avoid needing links to outer object.
712          */
713         private final float loadFactor;
714 
715         /**
716          * The collected weak-key reference queue for this segment. This should be (re)initialized whenever table is assigned,
717          */
718         private transient volatile ReferenceQueue<Object> refQueue;
719 
720         private final ReferenceType keyType;
721 
722         private final ReferenceType valueType;
723 
724         private final boolean identityComparisons;
725 
726         Segment(final int initialCapacity, final float loadFactor, final ReferenceType keyType, final ReferenceType valueType,
727                 final boolean identityComparisons) {
728             this.loadFactor = loadFactor;
729             this.keyType = keyType;
730             this.valueType = valueType;
731             this.identityComparisons = identityComparisons;
732             setTable(HashEntry.<K, V>newArray(initialCapacity));
733         }
734 
735         V apply(final K key, final int hash, final BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
736             lock();
737             try {
738                 final V oldValue = get(key, hash);
739                 final V newValue = remappingFunction.apply(key, oldValue);
740 
741                 if (newValue == null) {
742                     // delete mapping
743                     if (oldValue != null) {
744                         // something to remove
745                         removeInternal(key, hash, oldValue, false);
746                     }
747                     return null;
748                 }
749                 // add or replace old mapping
750                 putInternal(key, hash, newValue, null, false);
751                 return newValue;
752             } finally {
753                 unlock();
754             }
755         }
756 
757         V applyIfPresent(final K key, final int hash, final BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
758             lock();
759             try {
760                 final V oldValue = get(key, hash);
761                 if (oldValue == null) {
762                     return null;
763                 }
764 
765                 final V newValue = remappingFunction.apply(key, oldValue);
766 
767                 if (newValue == null) {
768                     removeInternal(key, hash, oldValue, false);
769                     return null;
770                 }
771                 putInternal(key, hash, newValue, null, false);
772                 return newValue;
773             } finally {
774                 unlock();
775             }
776         }
777 
778         void clear() {
779             if (count != 0) {
780                 lock();
781                 try {
782                     final HashEntry<K, V>[] tab = table;
783                     Arrays.fill(tab, null);
784                     ++modCount;
785                     // replace the reference queue to avoid unnecessary stale cleanups
786                     refQueue = new ReferenceQueue<>();
787                     // write-volatile
788                     count = 0;
789                 } finally {
790                     unlock();
791                 }
792             }
793         }
794 
795         boolean containsKey(final Object key, final int hash) {
796             // read-volatile
797             if (count != 0) {
798                 HashEntry<K, V> e = getFirst(hash);
799                 while (e != null) {
800                     if (e.hash == hash && keyEq(key, e.key())) {
801                         return true;
802                     }
803                     e = e.next;
804                 }
805             }
806             return false;
807         }
808 
809         boolean containsValue(final Object value) {
810             // read-volatile
811             if (count != 0) {
812                 final HashEntry<K, V>[] tab = table;
813                 final int len = tab.length;
814                 for (int i = 0; i < len; i++) {
815                     for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) {
816                         final Object opaque = e.valueRef;
817                         V v;
818                         if (opaque == null) {
819                             // recheck
820                             v = readValueUnderLock(e);
821                         } else {
822                             v = e.dereferenceValue(opaque);
823                         }
824                         if (Objects.equals(value, v)) {
825                             return true;
826                         }
827                     }
828                 }
829             }
830             return false;
831         }
832 
833         /* Specialized implementations of map methods */
834         V get(final Object key, final int hash) {
835             // read-volatile
836             if (count != 0) {
837                 HashEntry<K, V> e = getFirst(hash);
838                 while (e != null) {
839                     if (e.hash == hash && keyEq(key, e.key())) {
840                         final Object opaque = e.valueRef;
841                         if (opaque != null) {
842                             return e.dereferenceValue(opaque);
843                         }
844                         // recheck
845                         return readValueUnderLock(e);
846                     }
847                     e = e.next;
848                 }
849             }
850             return null;
851         }
852 
853         /**
854          * Gets properly casted first entry of bin for given hash.
855          */
856         HashEntry<K, V> getFirst(final int hash) {
857             final HashEntry<K, V>[] tab = table;
858             return tab[hash & tab.length - 1];
859         }
860 
861         V getValue(final K key, final V value, final Function<? super K, ? extends V> function) {
862             return value != null ? value : function.apply(key);
863         }
864 
865         private boolean keyEq(final Object src, final Object dest) {
866             return identityComparisons ? src == dest : Objects.equals(src, dest);
867         }
868 
869         HashEntry<K, V> newHashEntry(final K key, final int hash, final HashEntry<K, V> next, final V value) {
870             return new HashEntry<>(key, hash, next, value, keyType, valueType, refQueue);
871         }
872 
873         /**
874          * This method must be called with exactly one of <code>value</code> and <code>function</code> non-null.
875          **/
876         V put(final K key, final int hash, final V value, final Function<? super K, ? extends V> function, final boolean onlyIfAbsent) {
877             lock();
878             try {
879                 return putInternal(key, hash, value, function, onlyIfAbsent);
880             } finally {
881                 unlock();
882             }
883         }
884 
885         private V putInternal(final K key, final int hash, final V value, final Function<? super K, ? extends V> function, final boolean onlyIfAbsent) {
886             removeStale();
887             int c = count;
888             // ensure capacity
889             if (c++ > threshold) {
890                 final int reduced = rehash();
891                 // adjust from possible weak cleanups
892                 if (reduced > 0) {
893                     // write-volatile
894                     count = (c -= reduced) - 1;
895                 }
896             }
897             final HashEntry<K, V>[] tab = table;
898             final int index = hash & tab.length - 1;
899             final HashEntry<K, V> first = tab[index];
900             HashEntry<K, V> e = first;
901             while (e != null && (e.hash != hash || !keyEq(key, e.key()))) {
902                 e = e.next;
903             }
904             V resultValue;
905             if (e != null) {
906                 resultValue = e.value();
907                 if (!onlyIfAbsent) {
908                     e.setValue(getValue(key, value, function), valueType, refQueue);
909                 }
910             } else {
911                 final V v = getValue(key, value, function);
912                 resultValue = function != null ? v : null;
913 
914                 if (v != null) {
915                     ++modCount;
916                     tab[index] = newHashEntry(key, hash, first, v);
917                     // write-volatile
918                     count = c;
919                 }
920             }
921             return resultValue;
922         }
923 
924         /**
925          * Reads value field of an entry under lock. Called if value field ever appears to be null. This is possible only if a compiler happens to reorder a
926          * HashEntry initialization with its table assignment, which is legal under memory model but is not known to ever occur.
927          */
928         V readValueUnderLock(final HashEntry<K, V> e) {
929             lock();
930             try {
931                 removeStale();
932                 return e.value();
933             } finally {
934                 unlock();
935             }
936         }
937 
938         int rehash() {
939             final HashEntry<K, V>[] oldTable = table;
940             final int oldCapacity = oldTable.length;
941             if (oldCapacity >= MAXIMUM_CAPACITY) {
942                 return 0;
943             }
944             //
945             // Reclassify nodes in each list to new Map. Because we are using power-of-two expansion, the elements from each bin must either stay at the same
946             // index, or move with a power of two offset. We eliminate unnecessary node creation by catching cases where old nodes can be reused because their
947             // next fields won't change. Statistically, at the default threshold, only about one-sixth of them need cloning when a table doubles. The nodes they
948             // replace will be garbage collectable as soon as they are no longer referenced by any reader thread that may be in the midst of traversing table
949             // right now.
950             //
951             final HashEntry<K, V>[] newTable = HashEntry.newArray(oldCapacity << 1);
952             threshold = (int) (newTable.length * loadFactor);
953             final int sizeMask = newTable.length - 1;
954             int reduce = 0;
955             for (int i = 0; i < oldCapacity; i++) {
956                 // We need to guarantee that any existing reads of old Map can
957                 // proceed. So we cannot yet null out each bin.
958                 final HashEntry<K, V> e = oldTable[i];
959                 if (e != null) {
960                     final HashEntry<K, V> next = e.next;
961                     final int idx = e.hash & sizeMask;
962                     // Single node on list
963                     if (next == null) {
964                         newTable[idx] = e;
965                     } else {
966                         // Reuse trailing consecutive sequence at same slot
967                         HashEntry<K, V> lastRun = e;
968                         int lastIdx = idx;
969                         for (HashEntry<K, V> last = next; last != null; last = last.next) {
970                             final int k = last.hash & sizeMask;
971                             if (k != lastIdx) {
972                                 lastIdx = k;
973                                 lastRun = last;
974                             }
975                         }
976                         newTable[lastIdx] = lastRun;
977                         // Clone all remaining nodes
978                         for (HashEntry<K, V> p = e; p != lastRun; p = p.next) {
979                             // Skip GC'd weak refs
980                             final K key = p.key();
981                             if (key == null) {
982                                 reduce++;
983                                 continue;
984                             }
985                             final int k = p.hash & sizeMask;
986                             final HashEntry<K, V> n = newTable[k];
987                             newTable[k] = newHashEntry(key, p.hash, n, p.value());
988                         }
989                     }
990                 }
991             }
992             table = newTable;
993             return reduce;
994         }
995 
996         /**
997          * Removes match on key only if value is null, else match both.
998          */
999         V remove(final Object key, final int hash, final Object value, final boolean refRemove) {
1000             lock();
1001             try {
1002                 return removeInternal(key, hash, value, refRemove);
1003             } finally {
1004                 unlock();
1005             }
1006         }
1007 
1008         private V removeInternal(final Object key, final int hash, final Object value, final boolean refRemove) {
1009             if (!refRemove) {
1010                 removeStale();
1011             }
1012             int c = count - 1;
1013             final HashEntry<K, V>[] tab = table;
1014             final int index = hash & tab.length - 1;
1015             final HashEntry<K, V> first = tab[index];
1016             HashEntry<K, V> e = first;
1017             // a ref remove operation compares the Reference instance
1018             while (e != null && key != e.keyRef && (refRemove || hash != e.hash || !keyEq(key, e.key()))) {
1019                 e = e.next;
1020             }
1021 
1022             V oldValue = null;
1023             if (e != null) {
1024                 final V v = e.value();
1025                 if (value == null || value.equals(v)) {
1026                     oldValue = v;
1027                     // All entries following removed node can stay
1028                     // in list, but all preceding ones need to be
1029                     // cloned.
1030                     ++modCount;
1031                     HashEntry<K, V> newFirst = e.next;
1032                     for (HashEntry<K, V> p = first; p != e; p = p.next) {
1033                         final K pKey = p.key();
1034                         // Skip GC'd keys
1035                         if (pKey == null) {
1036                             c--;
1037                             continue;
1038                         }
1039                         newFirst = newHashEntry(pKey, p.hash, newFirst, p.value());
1040                     }
1041                     tab[index] = newFirst;
1042                     // write-volatile
1043                     count = c;
1044                 }
1045             }
1046             return oldValue;
1047         }
1048 
1049         void removeStale() {
1050             KeyReference ref;
1051             while ((ref = (KeyReference) refQueue.poll()) != null) {
1052                 remove(ref.keyRef(), ref.keyHash(), null, true);
1053             }
1054         }
1055 
1056         V replace(final K key, final int hash, final V newValue) {
1057             lock();
1058             try {
1059                 return replaceInternal(key, hash, newValue);
1060             } finally {
1061                 unlock();
1062             }
1063         }
1064 
1065         boolean replace(final K key, final int hash, final V oldValue, final V newValue) {
1066             lock();
1067             try {
1068                 return replaceInternal2(key, hash, oldValue, newValue);
1069             } finally {
1070                 unlock();
1071             }
1072         }
1073 
1074         private V replaceInternal(final K key, final int hash, final V newValue) {
1075             removeStale();
1076             HashEntry<K, V> e = getFirst(hash);
1077             while (e != null && (e.hash != hash || !keyEq(key, e.key()))) {
1078                 e = e.next;
1079             }
1080             V oldValue = null;
1081             if (e != null) {
1082                 oldValue = e.value();
1083                 e.setValue(newValue, valueType, refQueue);
1084             }
1085             return oldValue;
1086         }
1087 
1088         private boolean replaceInternal2(final K key, final int hash, final V oldValue, final V newValue) {
1089             removeStale();
1090             HashEntry<K, V> e = getFirst(hash);
1091             while (e != null && (e.hash != hash || !keyEq(key, e.key()))) {
1092                 e = e.next;
1093             }
1094             boolean replaced = false;
1095             if (e != null && Objects.equals(oldValue, e.value())) {
1096                 replaced = true;
1097                 e.setValue(newValue, valueType, refQueue);
1098             }
1099             return replaced;
1100         }
1101 
1102         /**
1103          * Sets table to new HashEntry array. Call only while holding lock or in constructor.
1104          */
1105         void setTable(final HashEntry<K, V>[] newTable) {
1106             threshold = (int) (newTable.length * loadFactor);
1107             table = newTable;
1108             refQueue = new ReferenceQueue<>();
1109         }
1110     }
1111 
1112     private static class SimpleEntry<K, V> implements Entry<K, V> {
1113 
1114         private static boolean eq(final Object o1, final Object o2) {
1115             return Objects.equals(o1, o2);
1116         }
1117 
1118         private final K key;
1119 
1120         private V value;
1121 
1122         SimpleEntry(final K key, final V value) {
1123             this.key = key;
1124             this.value = value;
1125         }
1126 
1127         @Override
1128         public boolean equals(final Object o) {
1129             if (!(o instanceof Map.Entry)) {
1130                 return false;
1131             }
1132             final Entry<?, ?> e = (Entry<?, ?>) o;
1133             return eq(key, e.getKey()) && eq(value, e.getValue());
1134         }
1135 
1136         @Override
1137         public K getKey() {
1138             return key;
1139         }
1140 
1141         @Override
1142         public V getValue() {
1143             return value;
1144         }
1145 
1146         @Override
1147         public int hashCode() {
1148             return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode());
1149         }
1150 
1151         @Override
1152         public V setValue(final V value) {
1153             final V oldValue = this.value;
1154             this.value = value;
1155             return oldValue;
1156         }
1157 
1158         @Override
1159         public String toString() {
1160             return key + "=" + value;
1161         }
1162     }
1163 
1164     /**
1165      * A soft-key reference which stores the key hash needed for reclamation.
1166      */
1167     private static final class SoftKeyReference<K> extends SoftReference<K> implements KeyReference {
1168 
1169         private final int hash;
1170 
1171         SoftKeyReference(final K key, final int hash, final ReferenceQueue<Object> refQueue) {
1172             super(key, refQueue);
1173             this.hash = hash;
1174         }
1175 
1176         @Override
1177         public int keyHash() {
1178             return hash;
1179         }
1180 
1181         @Override
1182         public Object keyRef() {
1183             return this;
1184         }
1185     }
1186 
1187     private static final class SoftValueReference<V> extends SoftReference<V> implements KeyReference {
1188         private final Object keyRef;
1189         private final int hash;
1190 
1191         SoftValueReference(final V value, final Object keyRef, final int hash, final ReferenceQueue<Object> refQueue) {
1192             super(value, refQueue);
1193             this.keyRef = keyRef;
1194             this.hash = hash;
1195         }
1196 
1197         @Override
1198         public int keyHash() {
1199             return hash;
1200         }
1201 
1202         @Override
1203         public Object keyRef() {
1204             return keyRef;
1205         }
1206     }
1207 
1208     private final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1209         @Override
1210         public V next() {
1211             return super.nextEntry().value();
1212         }
1213 
1214         @Override
1215         public V nextElement() {
1216             return super.nextEntry().value();
1217         }
1218     }
1219 
1220     private final class Values extends AbstractCollection<V> {
1221         @Override
1222         public void clear() {
1223             ConcurrentReferenceHashMap.this.clear();
1224         }
1225 
1226         @Override
1227         public boolean contains(final Object o) {
1228             return ConcurrentReferenceHashMap.this.containsValue(o);
1229         }
1230 
1231         @Override
1232         public boolean isEmpty() {
1233             return ConcurrentReferenceHashMap.this.isEmpty();
1234         }
1235 
1236         @Override
1237         public Iterator<V> iterator() {
1238             return new ValueIterator();
1239         }
1240 
1241         @Override
1242         public int size() {
1243             return ConcurrentReferenceHashMap.this.size();
1244         }
1245     }
1246 
1247     /**
1248      * A weak-key reference which stores the key hash needed for reclamation.
1249      */
1250     private static final class WeakKeyReference<K> extends WeakReference<K> implements KeyReference {
1251         private final int hash;
1252 
1253         WeakKeyReference(final K key, final int hash, final ReferenceQueue<Object> refQueue) {
1254             super(key, refQueue);
1255             this.hash = hash;
1256         }
1257 
1258         @Override
1259         public int keyHash() {
1260             return hash;
1261         }
1262 
1263         @Override
1264         public Object keyRef() {
1265             return this;
1266         }
1267     }
1268 
1269     private static final class WeakValueReference<V> extends WeakReference<V> implements KeyReference {
1270         private final Object keyRef;
1271         private final int hash;
1272 
1273         WeakValueReference(final V value, final Object keyRef, final int hash, final ReferenceQueue<Object> refQueue) {
1274             super(value, refQueue);
1275             this.keyRef = keyRef;
1276             this.hash = hash;
1277         }
1278 
1279         @Override
1280         public int keyHash() {
1281             return hash;
1282         }
1283 
1284         @Override
1285         public Object keyRef() {
1286             return keyRef;
1287         }
1288     }
1289 
1290     /**
1291      * Custom Entry class used by EntryIterator.next(), that relays setValue changes to the underlying map.
1292      */
1293     private final class WriteThroughEntry extends SimpleEntry<K, V> {
1294 
1295         private WriteThroughEntry(final K k, final V v) {
1296             super(k, v);
1297         }
1298 
1299         /**
1300          * Set our entry's value and writes it through to the map. The value to return is somewhat arbitrary: since a WriteThroughEntry does not necessarily
1301          * track asynchronous changes, the most recent "previous" value could be different from what we return (or could even have been removed in which case
1302          * the put will re-establish). We do not and cannot guarantee more.
1303          */
1304         @Override
1305         public V setValue(final V value) {
1306             if (value == null) {
1307                 throw new NullPointerException();
1308             }
1309             final V v = super.setValue(value);
1310             ConcurrentReferenceHashMap.this.put(getKey(), value);
1311             return v;
1312         }
1313     }
1314 
1315     static final ReferenceType DEFAULT_KEY_TYPE = ReferenceType.WEAK;
1316 
1317     static final ReferenceType DEFAULT_VALUE_TYPE = ReferenceType.STRONG;
1318 
1319     static final EnumSet<Option> DEFAULT_OPTIONS = null;
1320 
1321     /**
1322      * The default initial capacity for this table, used when not otherwise specified in a constructor.
1323      */
1324     static final int DEFAULT_INITIAL_CAPACITY = 16;
1325 
1326     /**
1327      * The default load factor for this table, used when not otherwise specified in a constructor.
1328      */
1329     static final float DEFAULT_LOAD_FACTOR = 0.75f;
1330 
1331     /**
1332      * The default concurrency level for this table, used when not otherwise specified in a constructor.
1333      */
1334     static final int DEFAULT_CONCURRENCY_LEVEL = 16;
1335 
1336     /**
1337      * The maximum capacity, used if a higher value is implicitly specified by either of the constructors with arguments. MUST be a power of two &lt;=
1338      * 1&lt;&lt;30 to ensure that entries are indexable using ints.
1339      */
1340     private static final int MAXIMUM_CAPACITY = 1 << 30;
1341 
1342     /**
1343      * The maximum number of segments to allow; used to bound constructor arguments.
1344      */
1345     private static final int MAX_SEGMENTS = 1 << 16;
1346 
1347     /**
1348      * Number of unsynchronized retries in size and containsValue methods before resorting to locking. This is used to avoid unbounded retries if tables undergo
1349      * continuous modification which would make it impossible to obtain an accurate result.
1350      */
1351     private static final int RETRIES_BEFORE_LOCK = 2;
1352 
1353     /**
1354      * Creates a new Builder.
1355      * <p>
1356      * By default, keys are weak, and values are strong.
1357      * </p>
1358      * <p>
1359      * The default values are:
1360      * </p>
1361      * <ul>
1362      * <li>concurrency level: {@value #DEFAULT_CONCURRENCY_LEVEL}</li>
1363      * <li>initial capacity: {@value #DEFAULT_INITIAL_CAPACITY}</li>
1364      * <li>key reference type: {@link ReferenceType#WEAK}</li>
1365      * <li>load factor: {@value #DEFAULT_LOAD_FACTOR}</li>
1366      * <li>options: {@code null}</li>
1367      * <li>source map: {@code null}</li>
1368      * <li>value reference type: {@link ReferenceType#STRONG}</li>
1369      * </ul>
1370      *
1371      * @param <K> the type of keys.
1372      * @param <V> the type of values.
1373      * @return a new Builder.
1374      */
1375     public static <K, V> Builder<K, V> builder() {
1376         return new Builder<>();
1377     }
1378 
1379     /**
1380      * Applies a supplemental hash function to a given hashCode, which defends against poor quality hash functions. This is critical because
1381      * ConcurrentReferenceHashMap uses power-of-two length hash tables, that otherwise encounter collisions for hashCodes that do not differ in lower or upper
1382      * bits.
1383      */
1384     private static int hash(int h) {
1385         // Spread bits to regularize both segment and index locations,
1386         // using variant of single-word Wang/Jenkins hash.
1387         h += h << 15 ^ 0xffffcd7d;
1388         h ^= h >>> 10;
1389         h += h << 3;
1390         h ^= h >>> 6;
1391         h += (h << 2) + (h << 14);
1392         return h ^ h >>> 16;
1393     }
1394 
1395     /**
1396      * Mask value for indexing into segments. The upper bits of a key's hash code are used to choose the segment.
1397      */
1398     private final int segmentMask;
1399 
1400     /**
1401      * Shift value for indexing within segments.
1402      */
1403     private final int segmentShift;
1404 
1405     /**
1406      * The segments, each of which is a specialized hash table
1407      */
1408     private final Segment<K, V>[] segments;
1409 
1410     private final boolean identityComparisons;
1411 
1412     private transient Set<K> keySet;
1413 
1414     private transient Set<Entry<K, V>> entrySet;
1415 
1416     private transient Collection<V> values;
1417 
1418     /**
1419      * Creates a new, empty map with the specified initial capacity, reference types, load factor, and concurrency level.
1420      * <p>
1421      * Behavioral changing options such as {@link Option#IDENTITY_COMPARISONS} can also be specified.
1422      * </p>
1423      *
1424      * @param initialCapacity  the initial capacity. The implementation performs internal sizing to accommodate this many elements.
1425      * @param loadFactor       the load factor threshold, used to control resizing. Resizing may be performed when the average number of elements per bin
1426      *                         exceeds this threshold.
1427      * @param concurrencyLevel the estimated number of concurrently updating threads. The implementation performs internal sizing to try to accommodate this
1428      *                         many threads.
1429      * @param keyType          the reference type to use for keys.
1430      * @param valueType        the reference type to use for values.
1431      * @param options          the behavioral options.
1432      * @throws IllegalArgumentException if the initial capacity is negative or the load factor or concurrencyLevel are nonpositive.
1433      */
1434     private ConcurrentReferenceHashMap(int initialCapacity, final float loadFactor, int concurrencyLevel, final ReferenceType keyType,
1435             final ReferenceType valueType, final EnumSet<Option> options) {
1436         if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) {
1437             throw new IllegalArgumentException();
1438         }
1439         if (concurrencyLevel > MAX_SEGMENTS) {
1440             concurrencyLevel = MAX_SEGMENTS;
1441         }
1442         // Find power-of-two sizes best matching arguments
1443         int sshift = 0;
1444         int ssize = 1;
1445         while (ssize < concurrencyLevel) {
1446             ++sshift;
1447             ssize <<= 1;
1448         }
1449         segmentShift = 32 - sshift;
1450         segmentMask = ssize - 1;
1451         this.segments = Segment.newArray(ssize);
1452         if (initialCapacity > MAXIMUM_CAPACITY) {
1453             initialCapacity = MAXIMUM_CAPACITY;
1454         }
1455         int c = initialCapacity / ssize;
1456         if (c * ssize < initialCapacity) {
1457             ++c;
1458         }
1459         int cap = 1;
1460         while (cap < c) {
1461             cap <<= 1;
1462         }
1463         identityComparisons = options != null && options.contains(Option.IDENTITY_COMPARISONS);
1464         for (int i = 0; i < this.segments.length; ++i) {
1465             this.segments[i] = new Segment<>(cap, loadFactor, keyType, valueType, identityComparisons);
1466         }
1467     }
1468 
1469     /**
1470      * Removes all of the mappings from this map.
1471      */
1472     @Override
1473     public void clear() {
1474         for (final Segment<K, V> segment : segments) {
1475             segment.clear();
1476         }
1477     }
1478 
1479     @Override
1480     public V compute(final K key, final BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1481         Objects.requireNonNull(key);
1482         Objects.requireNonNull(remappingFunction);
1483 
1484         final int hash = hashOf(key);
1485         final Segment<K, V> segment = segmentFor(hash);
1486         return segment.apply(key, hash, remappingFunction);
1487     }
1488 
1489     /**
1490      * The default implementation is equivalent to the following steps for this {@code map}, then returning the current value or {@code null} if now absent:
1491      *
1492      * <pre>{@code
1493      * if (map.get(key) == null) {
1494      *     V newValue = mappingFunction.apply(key);
1495      *     if (newValue != null)
1496      *         return map.putIfAbsent(key, newValue);
1497      * }
1498      * }</pre>
1499      * <p>
1500      * The default implementation may retry these steps when multiple threads attempt updates including potentially calling the mapping function multiple times.
1501      * </p>
1502      * <p>
1503      * This implementation assumes that the ConcurrentMap cannot contain null values and {@code get()} returning null unambiguously means the key is absent.
1504      * Implementations which support null values <strong>must</strong> override this default implementation.
1505      * </p>
1506      */
1507     @Override
1508     public V computeIfAbsent(final K key, final Function<? super K, ? extends V> mappingFunction) {
1509         Objects.requireNonNull(key);
1510         Objects.requireNonNull(mappingFunction);
1511 
1512         final int hash = hashOf(key);
1513         final Segment<K, V> segment = segmentFor(hash);
1514         final V v = segment.get(key, hash);
1515         return v == null ? segment.put(key, hash, null, mappingFunction, true) : v;
1516     }
1517 
1518     @Override
1519     public V computeIfPresent(final K key, final BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1520         Objects.requireNonNull(key);
1521         Objects.requireNonNull(remappingFunction);
1522 
1523         final int hash = hashOf(key);
1524         final Segment<K, V> segment = segmentFor(hash);
1525         final V v = segment.get(key, hash);
1526         if (v == null) {
1527             return null;
1528         }
1529 
1530         return segmentFor(hash).applyIfPresent(key, hash, remappingFunction);
1531     }
1532 
1533     /**
1534      * Tests if the specified object is a key in this table.
1535      *
1536      * @param key possible key
1537      * @return {@code true} if and only if the specified object is a key in this table, as determined by the {@code equals} method; {@code false} otherwise.
1538      * @throws NullPointerException if the specified key is null
1539      */
1540     @Override
1541     public boolean containsKey(final Object key) {
1542         final int hash = hashOf(key);
1543         return segmentFor(hash).containsKey(key, hash);
1544     }
1545 
1546     /**
1547      * Returns {@code true} if this map maps one or more keys to the specified value. Note: This method requires a full internal traversal of the hash table,
1548      * therefore it is much slower than the method {@code containsKey}.
1549      *
1550      * @param value value whose presence in this map is to be tested
1551      * @return {@code true} if this map maps one or more keys to the specified value
1552      * @throws NullPointerException if the specified value is null
1553      */
1554     @Override
1555     public boolean containsValue(final Object value) {
1556         if (value == null) {
1557             throw new NullPointerException();
1558         }
1559         // See explanation of modCount use above
1560         final Segment<K, V>[] segments = this.segments;
1561         final int[] mc = new int[segments.length];
1562         // Try a few times without locking
1563         for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
1564             // final int sum = 0;
1565             int mcsum = 0;
1566             for (int i = 0; i < segments.length; ++i) {
1567                 // final int c = segments[i].count;
1568                 mcsum += mc[i] = segments[i].modCount;
1569                 if (segments[i].containsValue(value)) {
1570                     return true;
1571                 }
1572             }
1573             boolean cleanSweep = true;
1574             if (mcsum != 0) {
1575                 for (int i = 0; i < segments.length; ++i) {
1576                     // final int c = segments[i].count;
1577                     if (mc[i] != segments[i].modCount) {
1578                         cleanSweep = false;
1579                         break;
1580                     }
1581                 }
1582             }
1583             if (cleanSweep) {
1584                 return false;
1585             }
1586         }
1587         // Resort to locking all segments
1588         for (final Segment<K, V> segment : segments) {
1589             segment.lock();
1590         }
1591         boolean found = false;
1592         try {
1593             for (final Segment<K, V> segment : segments) {
1594                 if (segment.containsValue(value)) {
1595                     found = true;
1596                     break;
1597                 }
1598             }
1599         } finally {
1600             for (final Segment<K, V> segment : segments) {
1601                 segment.unlock();
1602             }
1603         }
1604         return found;
1605     }
1606 
1607     /**
1608      * Returns a {@link Set} view of the mappings contained in this map. The set is backed by the map, so changes to the map are reflected in the set, and
1609      * vice-versa. The set supports element removal, which removes the corresponding mapping from the map, via the {@code Iterator.remove}, {@code Set.remove},
1610      * {@code removeAll}, {@code retainAll}, and {@code clear} operations. It does not support the {@code add} or {@code addAll} operations.
1611      * <p>
1612      * The view's {@code iterator} is a "weakly consistent" iterator that will never throw {@link ConcurrentModificationException}, and is guaranteed to
1613      * traverse elements as they existed upon construction of the iterator, and may (but is not guaranteed to) reflect any modifications subsequent to
1614      * construction.
1615      * </p>
1616      */
1617     @Override
1618     public Set<Entry<K, V>> entrySet() {
1619         final Set<Entry<K, V>> es = entrySet;
1620         return es != null ? es : (entrySet = new EntrySet(false));
1621     }
1622 
1623     /**
1624      * Returns the value to which the specified key is mapped, or {@code null} if this map contains no mapping for the key.
1625      * <p>
1626      * If this map contains a mapping from a key {@code k} to a value {@code v} such that {@code key.equals(k)}, then this method returns {@code v}; otherwise
1627      * it returns {@code null}. (There can be at most one such mapping.)
1628      * </p>
1629      *
1630      * @throws NullPointerException if the specified key is null
1631      */
1632     @Override
1633     public V get(final Object key) {
1634         final int hash = hashOf(key);
1635         return segmentFor(hash).get(key, hash);
1636     }
1637 
1638     private int hashOf(final Object key) {
1639         return hash(identityComparisons ? System.identityHashCode(key) : key.hashCode());
1640     }
1641 
1642     /**
1643      * Returns {@code true} if this map contains no key-value mappings.
1644      *
1645      * @return {@code true} if this map contains no key-value mappings
1646      */
1647     @Override
1648     public boolean isEmpty() {
1649         final Segment<K, V>[] segments = this.segments;
1650         //
1651         // We keep track of per-segment modCounts to avoid ABA problems in which an element in one segment was added and in another removed during traversal, in
1652         // which case the table was never actually empty at any point. Note the similar use of modCounts in the size() and containsValue() methods, which are
1653         // the only other methods also susceptible to ABA problems.
1654         //
1655         final int[] mc = new int[segments.length];
1656         int mcsum = 0;
1657         for (int i = 0; i < segments.length; ++i) {
1658             if (segments[i].count != 0) {
1659                 return false;
1660             }
1661             mcsum += mc[i] = segments[i].modCount;
1662         }
1663         // If mcsum happens to be zero, then we know we got a snapshot
1664         // before any modifications at all were made. This is
1665         // probably common enough to bother tracking.
1666         if (mcsum != 0) {
1667             for (int i = 0; i < segments.length; ++i) {
1668                 if (segments[i].count != 0 || mc[i] != segments[i].modCount) {
1669                     return false;
1670                 }
1671             }
1672         }
1673         return true;
1674     }
1675 
1676     /**
1677      * Returns a {@link Set} view of the keys contained in this map. The set is backed by the map, so changes to the map are reflected in the set, and
1678      * vice-versa. The set supports element removal, which removes the corresponding mapping from this map, via the {@code Iterator.remove}, {@code Set.remove},
1679      * {@code removeAll}, {@code retainAll}, and {@code clear} operations. It does not support the {@code add} or {@code addAll} operations.
1680      * <p>
1681      * The view's {@code iterator} is a "weakly consistent" iterator that will never throw {@link ConcurrentModificationException}, and guarantees to traverse
1682      * elements as they existed upon construction of the iterator, and may (but is not guaranteed to) reflect any modifications subsequent to construction.
1683      * </p>
1684      */
1685     @Override
1686     public Set<K> keySet() {
1687         final Set<K> ks = keySet;
1688         return ks != null ? ks : (keySet = new KeySet());
1689     }
1690 
1691     /**
1692      * Removes any stale entries whose keys have been finalized. Use of this method is normally not necessary since stale entries are automatically removed
1693      * lazily, when blocking operations are required. However, there are some cases where this operation should be performed eagerly, such as cleaning up old
1694      * references to a ClassLoader in a multi-classloader environment.
1695      * <p>
1696      * Note: this method will acquire locks one at a time across all segments of this table, so this method should be used sparingly.
1697      * </p>
1698      */
1699     public void purgeStaleEntries() {
1700         for (final Segment<K, V> segment : segments) {
1701             segment.removeStale();
1702         }
1703     }
1704 
1705     /**
1706      * Maps the specified key to the specified value in this table. Neither the key nor the value can be null.
1707      * <p>
1708      * The value can be retrieved by calling the {@code get} method with a key that is equal to the original key.
1709      * </p>
1710      *
1711      * @param key   key with which the specified value is to be associated
1712      * @param value value to be associated with the specified key
1713      * @return the previous value associated with {@code key}, or {@code null} if there was no mapping for {@code key}
1714      * @throws NullPointerException if the specified key or value is null
1715      */
1716     @Override
1717     public V put(final K key, final V value) {
1718         if (key == null || value == null) {
1719             throw new NullPointerException();
1720         }
1721         final int hash = hashOf(key);
1722         return segmentFor(hash).put(key, hash, value, null, false);
1723     }
1724 
1725     /**
1726      * Copies all of the mappings from the specified map to this one. These mappings replace any mappings that this map had for any of the keys currently in the
1727      * specified map.
1728      *
1729      * @param m mappings to be stored in this map
1730      */
1731     @Override
1732     public void putAll(final Map<? extends K, ? extends V> m) {
1733         for (final Entry<? extends K, ? extends V> e : m.entrySet()) {
1734             put(e.getKey(), e.getValue());
1735         }
1736     }
1737 
1738     /**
1739      * {@inheritDoc}
1740      *
1741      * @return the previous value associated with the specified key, or {@code null} if there was no mapping for the key
1742      * @throws NullPointerException if the specified key or value is null
1743      */
1744     @Override
1745     public V putIfAbsent(final K key, final V value) {
1746         if (value == null) {
1747             throw new NullPointerException();
1748         }
1749         final int hash = hashOf(key);
1750         return segmentFor(hash).put(key, hash, value, null, true);
1751     }
1752 
1753     /**
1754      * Removes the key (and its corresponding value) from this map. This method does nothing if the key is not in the map.
1755      *
1756      * @param key the key that needs to be removed
1757      * @return the previous value associated with {@code key}, or {@code null} if there was no mapping for {@code key}
1758      * @throws NullPointerException if the specified key is null
1759      */
1760     @Override
1761     public V remove(final Object key) {
1762         final int hash = hashOf(key);
1763         return segmentFor(hash).remove(key, hash, null, false);
1764     }
1765 
1766     /**
1767      * {@inheritDoc}
1768      *
1769      * @throws NullPointerException if the specified key is null
1770      */
1771     @Override
1772     public boolean remove(final Object key, final Object value) {
1773         final int hash = hashOf(key);
1774         if (value == null) {
1775             return false;
1776         }
1777         return segmentFor(hash).remove(key, hash, value, false) != null;
1778     }
1779 
1780     /**
1781      * {@inheritDoc}
1782      *
1783      * @return the previous value associated with the specified key, or {@code null} if there was no mapping for the key
1784      * @throws NullPointerException if the specified key or value is null
1785      */
1786     @Override
1787     public V replace(final K key, final V value) {
1788         if (value == null) {
1789             throw new NullPointerException();
1790         }
1791         final int hash = hashOf(key);
1792         return segmentFor(hash).replace(key, hash, value);
1793     }
1794 
1795     /**
1796      * {@inheritDoc}
1797      *
1798      * @throws NullPointerException if any of the arguments are null
1799      */
1800     @Override
1801     public boolean replace(final K key, final V oldValue, final V newValue) {
1802         if (oldValue == null || newValue == null) {
1803             throw new NullPointerException();
1804         }
1805         final int hash = hashOf(key);
1806         return segmentFor(hash).replace(key, hash, oldValue, newValue);
1807     }
1808 
1809     /**
1810      * Returns the segment that should be used for key with given hash
1811      *
1812      * @param hash the hash code for the key
1813      * @return the segment
1814      */
1815     private Segment<K, V> segmentFor(final int hash) {
1816         return segments[hash >>> segmentShift & segmentMask];
1817     }
1818 
1819     /**
1820      * Returns the number of key-value mappings in this map. If the map contains more than {@code Integer.MAX_VALUE} elements, returns
1821      * {@code Integer.MAX_VALUE}.
1822      *
1823      * @return the number of key-value mappings in this map
1824      */
1825     @Override
1826     public int size() {
1827         final Segment<K, V>[] segments = this.segments;
1828         long sum = 0;
1829         long check = 0;
1830         final int[] mc = new int[segments.length];
1831         // Try a few times to get accurate count. On failure due to
1832         // continuous async changes in table, resort to locking.
1833         for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
1834             check = 0;
1835             sum = 0;
1836             int mcsum = 0;
1837             for (int i = 0; i < segments.length; ++i) {
1838                 sum += segments[i].count;
1839                 mcsum += mc[i] = segments[i].modCount;
1840             }
1841             if (mcsum != 0) {
1842                 for (int i = 0; i < segments.length; ++i) {
1843                     check += segments[i].count;
1844                     if (mc[i] != segments[i].modCount) {
1845                         // force retry
1846                         check = -1;
1847                         break;
1848                     }
1849                 }
1850             }
1851             if (check == sum) {
1852                 break;
1853             }
1854         }
1855         if (check != sum) {
1856             // Resort to locking all segments
1857             sum = 0;
1858             for (final Segment<K, V> segment : segments) {
1859                 segment.lock();
1860             }
1861             for (final Segment<K, V> segment : segments) {
1862                 sum += segment.count;
1863             }
1864             for (final Segment<K, V> segment : segments) {
1865                 segment.unlock();
1866             }
1867         }
1868         return sum > Integer.MAX_VALUE ? Integer.MAX_VALUE : (int) sum;
1869     }
1870 
1871     /**
1872      * Returns a {@link Collection} view of the values contained in this map. The collection is backed by the map, so changes to the map are reflected in the
1873      * collection, and vice-versa. The collection supports element removal, which removes the corresponding mapping from this map, via the
1874      * {@code Iterator.remove}, {@code Collection.remove}, {@code removeAll}, {@code retainAll}, and {@code clear} operations. It does not support the
1875      * {@code add} or {@code addAll} operations.
1876      * <p>
1877      * The view's {@code iterator} is a "weakly consistent" iterator that will never throw {@link ConcurrentModificationException}, and guarantees to traverse
1878      * elements as they existed upon construction of the iterator, and may (but is not guaranteed to) reflect any modifications subsequent to construction.
1879      * </p>
1880      */
1881     @Override
1882     public Collection<V> values() {
1883         final Collection<V> vs = values;
1884         return vs != null ? vs : (values = new Values());
1885     }
1886 
1887 }