View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.analysis.solvers;
19  
20  import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
21  import org.apache.commons.math4.legacy.exception.ConvergenceException;
22  import org.apache.commons.math4.legacy.exception.MathInternalError;
23  import org.apache.commons.math4.core.jdkmath.JdkMath;
24  
25  /**
26   * Base class for all bracketing <em>Secant</em>-based methods for root-finding
27   * (approximating a zero of a univariate real function).
28   *
29   * <p>Implementation of the {@link RegulaFalsiSolver <em>Regula Falsi</em>} and
30   * {@link IllinoisSolver <em>Illinois</em>} methods is based on the
31   * following article: M. Dowell and P. Jarratt,
32   * <em>A modified regula falsi method for computing the root of an
33   * equation</em>, BIT Numerical Mathematics, volume 11, number 2,
34   * pages 168-174, Springer, 1971.</p>
35   *
36   * <p>Implementation of the {@link PegasusSolver <em>Pegasus</em>} method is
37   * based on the following article: M. Dowell and P. Jarratt,
38   * <em>The "Pegasus" method for computing the root of an equation</em>,
39   * BIT Numerical Mathematics, volume 12, number 4, pages 503-508, Springer,
40   * 1972.</p>
41   *
42   * <p>The {@link SecantSolver <em>Secant</em>} method is <em>not</em> a
43   * bracketing method, so it is not implemented here. It has a separate
44   * implementation.</p>
45   *
46   * @since 3.0
47   */
48  public abstract class BaseSecantSolver
49      extends AbstractUnivariateSolver
50      implements BracketedUnivariateSolver<UnivariateFunction> {
51  
52      /** Default absolute accuracy. */
53      protected static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
54  
55      /** The kinds of solutions that the algorithm may accept. */
56      private AllowedSolution allowed;
57  
58      /** The <em>Secant</em>-based root-finding method to use. */
59      private final Method method;
60  
61      /**
62       * Construct a solver.
63       *
64       * @param absoluteAccuracy Absolute accuracy.
65       * @param method <em>Secant</em>-based root-finding method to use.
66       */
67      protected BaseSecantSolver(final double absoluteAccuracy, final Method method) {
68          super(absoluteAccuracy);
69          this.allowed = AllowedSolution.ANY_SIDE;
70          this.method = method;
71      }
72  
73      /**
74       * Construct a solver.
75       *
76       * @param relativeAccuracy Relative accuracy.
77       * @param absoluteAccuracy Absolute accuracy.
78       * @param method <em>Secant</em>-based root-finding method to use.
79       */
80      protected BaseSecantSolver(final double relativeAccuracy,
81                                 final double absoluteAccuracy,
82                                 final Method method) {
83          super(relativeAccuracy, absoluteAccuracy);
84          this.allowed = AllowedSolution.ANY_SIDE;
85          this.method = method;
86      }
87  
88      /**
89       * Construct a solver.
90       *
91       * @param relativeAccuracy Maximum relative error.
92       * @param absoluteAccuracy Maximum absolute error.
93       * @param functionValueAccuracy Maximum function value error.
94       * @param method <em>Secant</em>-based root-finding method to use
95       */
96      protected BaseSecantSolver(final double relativeAccuracy,
97                                 final double absoluteAccuracy,
98                                 final double functionValueAccuracy,
99                                 final Method method) {
100         super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy);
101         this.allowed = AllowedSolution.ANY_SIDE;
102         this.method = method;
103     }
104 
105     /** {@inheritDoc} */
106     @Override
107     public double solve(final int maxEval, final UnivariateFunction f,
108                         final double min, final double max,
109                         final AllowedSolution allowedSolution) {
110         return solve(maxEval, f, min, max, min + 0.5 * (max - min), allowedSolution);
111     }
112 
113     /** {@inheritDoc} */
114     @Override
115     public double solve(final int maxEval, final UnivariateFunction f,
116                         final double min, final double max, final double startValue,
117                         final AllowedSolution allowedSolution) {
118         this.allowed = allowedSolution;
119         return super.solve(maxEval, f, min, max, startValue);
120     }
121 
122     /** {@inheritDoc} */
123     @Override
124     public double solve(final int maxEval, final UnivariateFunction f,
125                         final double min, final double max, final double startValue) {
126         return solve(maxEval, f, min, max, startValue, AllowedSolution.ANY_SIDE);
127     }
128 
129     /**
130      * {@inheritDoc}
131      *
132      * @throws ConvergenceException if the algorithm failed due to finite
133      * precision.
134      */
135     @Override
136     protected final double doSolve()
137         throws ConvergenceException {
138         // Get initial solution
139         double x0 = getMin();
140         double x1 = getMax();
141         double f0 = computeObjectiveValue(x0);
142         double f1 = computeObjectiveValue(x1);
143 
144         // If one of the bounds is the exact root, return it. Since these are
145         // not under-approximations or over-approximations, we can return them
146         // regardless of the allowed solutions.
147         if (f0 == 0.0) {
148             return x0;
149         }
150         if (f1 == 0.0) {
151             return x1;
152         }
153 
154         // Verify bracketing of initial solution.
155         verifyBracketing(x0, x1);
156 
157         // Get accuracies.
158         final double ftol = getFunctionValueAccuracy();
159         final double atol = getAbsoluteAccuracy();
160         final double rtol = getRelativeAccuracy();
161 
162         // Keep track of inverted intervals, meaning that the left bound is
163         // larger than the right bound.
164         boolean inverted = false;
165 
166         // Keep finding better approximations.
167         while (true) {
168             // Calculate the next approximation.
169             final double x = x1 - ((f1 * (x1 - x0)) / (f1 - f0));
170             final double fx = computeObjectiveValue(x);
171 
172             // If the new approximation is the exact root, return it. Since
173             // this is not an under-approximation or an over-approximation,
174             // we can return it regardless of the allowed solutions.
175             if (fx == 0.0) {
176                 return x;
177             }
178 
179             // Update the bounds with the new approximation.
180             if (f1 * fx < 0) {
181                 // The value of x1 has switched to the other bound, thus inverting
182                 // the interval.
183                 x0 = x1;
184                 f0 = f1;
185                 inverted = !inverted;
186             } else {
187                 switch (method) {
188                 case ILLINOIS:
189                     f0 *= 0.5;
190                     break;
191                 case PEGASUS:
192                     f0 *= f1 / (f1 + fx);
193                     break;
194                 case REGULA_FALSI:
195                     // Detect early that algorithm is stuck, instead of waiting
196                     // for the maximum number of iterations to be exceeded.
197                     if (x == x1) {
198                         throw new ConvergenceException();
199                     }
200                     break;
201                 default:
202                     // Should never happen.
203                     throw new MathInternalError();
204                 }
205             }
206             // Update from [x0, x1] to [x0, x].
207             x1 = x;
208             f1 = fx;
209 
210             // If the function value of the last approximation is too small,
211             // given the function value accuracy, then we can't get closer to
212             // the root than we already are.
213             if (JdkMath.abs(f1) <= ftol) {
214                 switch (allowed) {
215                 case ANY_SIDE:
216                     return x1;
217                 case LEFT_SIDE:
218                     if (inverted) {
219                         return x1;
220                     }
221                     break;
222                 case RIGHT_SIDE:
223                     if (!inverted) {
224                         return x1;
225                     }
226                     break;
227                 case BELOW_SIDE:
228                     if (f1 <= 0) {
229                         return x1;
230                     }
231                     break;
232                 case ABOVE_SIDE:
233                     if (f1 >= 0) {
234                         return x1;
235                     }
236                     break;
237                 default:
238                     throw new MathInternalError();
239                 }
240             }
241 
242             // If the current interval is within the given accuracies, we
243             // are satisfied with the current approximation.
244             if (JdkMath.abs(x1 - x0) < JdkMath.max(rtol * JdkMath.abs(x1),
245                                                      atol)) {
246                 switch (allowed) {
247                 case ANY_SIDE:
248                     return x1;
249                 case LEFT_SIDE:
250                     return inverted ? x1 : x0;
251                 case RIGHT_SIDE:
252                     return inverted ? x0 : x1;
253                 case BELOW_SIDE:
254                     return (f1 <= 0) ? x1 : x0;
255                 case ABOVE_SIDE:
256                     return (f1 >= 0) ? x1 : x0;
257                 default:
258                     throw new MathInternalError();
259                 }
260             }
261         }
262     }
263 
264     /** <em>Secant</em>-based root-finding methods. */
265     protected enum Method {
266 
267         /**
268          * The {@link RegulaFalsiSolver <em>Regula Falsi</em>} or
269          * <em>False Position</em> method.
270          */
271         REGULA_FALSI,
272 
273         /** The {@link IllinoisSolver <em>Illinois</em>} method. */
274         ILLINOIS,
275 
276         /** The {@link PegasusSolver <em>Pegasus</em>} method. */
277         PEGASUS;
278     }
279 }