View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.numbers.gamma;
18  
19  /**
20   * <a href="https://mathworld.wolfram.com/RegularizedGammaFunction.html">
21   * Regularized Gamma functions</a>.
22   *
23   * <p>By definition, the lower and upper regularized gamma functions satisfy:
24   *
25   * <p>\[ 1 = P(a, x) + Q(a, x) \]
26   *
27   * <p>This code has been adapted from the <a href="https://www.boost.org/">Boost</a>
28   * {@code c++} implementation {@code <boost/math/special_functions/gamma.hpp>}.
29   *
30   * @see
31   * <a href="https://www.boost.org/doc/libs/1_77_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html">
32   * Boost C++ Incomplete Gamma functions</a>
33   */
34  public final class RegularizedGamma {
35      /** Private constructor. */
36      private RegularizedGamma() {
37          // intentionally empty.
38      }
39  
40      /**
41       * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
42       * Lower regularized Gamma function</a> \( P(a, x) \).
43       *
44       * <p>\[ P(a,x) = 1 - Q(a,x) = \frac{\gamma(a,x)}{\Gamma(a)} = \frac{1}{\Gamma(a)} \int_0^x t^{a-1}\,e^{-t}\,dt \]
45       */
46      public static final class P {
47          /** Prevent instantiation. */
48          private P() {}
49  
50          /**
51           * Computes the lower regularized gamma function \( P(a, x) \).
52           *
53           * @param a Argument.
54           * @param x Argument.
55           * @return \( P(a, x) \).
56           * @throws ArithmeticException if the continued fraction fails to converge.
57           */
58          public static double value(double a,
59                                     double x) {
60              return BoostGamma.gammaP(a, x);
61          }
62  
63          /**
64           * Computes the lower regularized gamma function \( P(a, x) \).
65           *
66           * @param a Argument.
67           * @param x Argument.
68           * @param epsilon Tolerance in series evaluation.
69           * @param maxIterations Maximum number of iterations in series evaluation.
70           * @return \( P(a, x) \).
71           * @throws ArithmeticException if the series evaluation fails to converge.
72           */
73          public static double value(double a,
74                                     double x,
75                                     double epsilon,
76                                     int maxIterations) {
77              return BoostGamma.gammaP(a, x, new Policy(epsilon, maxIterations));
78          }
79  
80          /**
81           * Computes the derivative of the lower regularized gamma function \( P(a, x) \).
82           *
83           * <p>\[ \frac{\delta}{\delta x} P(a,x) = \frac{e^{-x} x^{a-1}}{\Gamma(a)} \]
84           *
85           * <p>This function has uses in some statistical distributions.
86           *
87           * @param a Argument.
88           * @param x Argument.
89           * @return derivative of \( P(a,x) \) with respect to x.
90           * @since 1.1
91           */
92          public static double derivative(double a,
93                                          double x) {
94              return BoostGamma.gammaPDerivative(a, x);
95          }
96      }
97  
98      /**
99       * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
100      * Upper regularized Gamma function</a> \( Q(a, x) \).
101      *
102      * <p>\[ Q(a,x) = 1 - P(a,x) = \frac{\Gamma(a,x)}{\Gamma(a)} = \frac{1}{\Gamma(a)} \int_x^{\infty} t^{a-1}\,e^{-t}\,dt \]
103      */
104     public static final class Q {
105         /** Prevent instantiation. */
106         private Q() {}
107 
108         /**
109          * Computes the upper regularized gamma function \( Q(a, x) \).
110          *
111          * @param a Argument.
112          * @param x Argument.
113          * @return \( Q(a, x) \).
114          * @throws ArithmeticException if the series evaluation fails to converge.
115          */
116         public static double value(double a,
117                                    double x) {
118             return BoostGamma.gammaQ(a, x);
119         }
120 
121         /**
122          * Computes the upper regularized gamma function \( Q(a, x) \).
123          *
124          * @param a Argument.
125          * @param x Argument.
126          * @param epsilon Tolerance in series evaluation.
127          * @param maxIterations Maximum number of iterations in series evaluation.
128          * @return \( Q(a, x) \).
129          * @throws ArithmeticException if the series evaluation fails to converge.
130          */
131         public static double value(final double a,
132                                    double x,
133                                    double epsilon,
134                                    int maxIterations) {
135             return BoostGamma.gammaQ(a, x, new Policy(epsilon, maxIterations));
136         }
137 
138         /**
139          * Computes the derivative of the upper regularized gamma function \( Q(a, x) \).
140          *
141          * <p>\[ \frac{\delta}{\delta x} Q(a,x) = -\frac{e^{-x} x^{a-1}}{\Gamma(a)} \]
142          *
143          * <p>This function has uses in some statistical distributions.
144          *
145          * @param a Argument.
146          * @param x Argument.
147          * @return derivative of \( Q(a,x) \) with respect to x.
148          * @since 1.1
149          */
150         public static double derivative(double a,
151                                         double x) {
152             return -BoostGamma.gammaPDerivative(a, x);
153         }
154     }
155 }