View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.numbers.quaternion;
19  
20  import java.util.Arrays;
21  import java.util.function.ToDoubleFunction;
22  import java.util.function.BiPredicate;
23  import java.io.Serializable;
24  import org.apache.commons.numbers.core.Precision;
25  
26  /**
27   * This class implements <a href="http://mathworld.wolfram.com/Quaternion.html">
28   * quaternions</a> (Hamilton's hypercomplex numbers).
29   *
30   * <p>Wherever quaternion components are listed in sequence, this class follows the
31   * convention of placing the scalar ({@code w}) component first, e.g. [{@code w, x, y, z}].
32   * Other libraries and textbooks may place the {@code w} component last.</p>
33   *
34   * <p>Instances of this class are guaranteed to be immutable.</p>
35   */
36  public final class Quaternion implements Serializable {
37      /** Zero quaternion. */
38      public static final Quaternion ZERO = of(0, 0, 0, 0);
39      /** Identity quaternion. */
40      public static final Quaternion ONE = new Quaternion(Type.POSITIVE_POLAR_FORM, 1, 0, 0, 0);
41      /** i. */
42      public static final Quaternion I = new Quaternion(Type.POSITIVE_POLAR_FORM, 0, 1, 0, 0);
43      /** j. */
44      public static final Quaternion J = new Quaternion(Type.POSITIVE_POLAR_FORM, 0, 0, 1, 0);
45      /** k. */
46      public static final Quaternion K = new Quaternion(Type.POSITIVE_POLAR_FORM, 0, 0, 0, 1);
47  
48      /** Serializable version identifier. */
49      private static final long serialVersionUID = 20170118L;
50      /** Error message. */
51      private static final String ILLEGAL_NORM_MSG = "Illegal norm: ";
52  
53      /** {@link #toString() String representation}. */
54      private static final String FORMAT_START = "[";
55      /** {@link #toString() String representation}. */
56      private static final String FORMAT_END = "]";
57      /** {@link #toString() String representation}. */
58      private static final String FORMAT_SEP = " ";
59  
60      /** The number of dimensions for the vector part of the quaternion. */
61      private static final int VECTOR_DIMENSIONS = 3;
62      /** The number of parts when parsing a text representation of the quaternion. */
63      private static final int NUMBER_OF_PARTS = 4;
64  
65      /** For enabling specialized method implementations. */
66      private final Type type;
67      /** First component (scalar part). */
68      private final double w;
69      /** Second component (first vector part). */
70      private final double x;
71      /** Third component (second vector part). */
72      private final double y;
73      /** Fourth component (third vector part). */
74      private final double z;
75  
76      /**
77       * For enabling optimized implementations.
78       */
79      private enum Type {
80          /** Default implementation. */
81          DEFAULT(Default.NORMSQ,
82                  Default.NORM,
83                  Default.IS_UNIT),
84          /** Quaternion has unit norm. */
85          NORMALIZED(Normalized.NORM,
86                     Normalized.NORM,
87                     Normalized.IS_UNIT),
88          /** Quaternion has positive scalar part. */
89          POSITIVE_POLAR_FORM(Normalized.NORM,
90                              Normalized.NORM,
91                              Normalized.IS_UNIT);
92  
93          /** {@link Quaternion#normSq()}. */
94          private final ToDoubleFunction<Quaternion> normSq;
95          /** {@link Quaternion#norm()}. */
96          private final ToDoubleFunction<Quaternion> norm;
97          /** {@link Quaternion#isUnit(double)}. */
98          private final BiPredicate<Quaternion, Double> testIsUnit;
99  
100         /** Default implementations. */
101         private static final class Default {
102             /** {@link Quaternion#normSq()}. */
103             static final ToDoubleFunction<Quaternion> NORMSQ = q ->
104                 q.w * q.w + q.x * q.x + q.y * q.y + q.z * q.z;
105 
106             /** {@link Quaternion#norm()}. */
107             private static final ToDoubleFunction<Quaternion> NORM = q ->
108                 Math.sqrt(NORMSQ.applyAsDouble(q));
109 
110             /** {@link Quaternion#isUnit(double)}. */
111             private static final BiPredicate<Quaternion, Double> IS_UNIT = (q, eps) ->
112                 Precision.equals(NORM.applyAsDouble(q), 1d, eps);
113         }
114 
115         /** Implementations for normalized quaternions. */
116         private static final class Normalized {
117             /** {@link Quaternion#norm()} returns 1. */
118             static final ToDoubleFunction<Quaternion> NORM = q -> 1;
119             /** {@link Quaternion#isUnit(double)} returns 1. */
120             static final BiPredicate<Quaternion, Double> IS_UNIT = (q, eps) -> true;
121         }
122 
123         /**
124          * @param normSq {@code normSq} method.
125          * @param norm {@code norm} method.
126          * @param isUnit {@code isUnit} method.
127          */
128         Type(ToDoubleFunction<Quaternion> normSq,
129              ToDoubleFunction<Quaternion> norm,
130              BiPredicate<Quaternion, Double> isUnit)  {
131             this.normSq = normSq;
132             this.norm = norm;
133             this.testIsUnit = isUnit;
134         }
135 
136         /**
137          * @param q Quaternion.
138          * @return the norm squared.
139          */
140         double normSq(Quaternion q) {
141             return normSq.applyAsDouble(q);
142         }
143         /**
144          * @param q Quaternion.
145          * @return the norm.
146          */
147         double norm(Quaternion q) {
148             return norm.applyAsDouble(q);
149         }
150         /**
151          * @param q Quaternion.
152          * @param eps Tolerance.
153          * @return whether {@code q} has unit norm within the allowed tolerance.
154          */
155         boolean isUnit(Quaternion q,
156                        double eps) {
157             return testIsUnit.test(q, eps);
158         }
159     }
160 
161     /**
162      * Builds a quaternion from its components.
163      *
164      * @param type Quaternion type.
165      * @param w Scalar component.
166      * @param x First vector component.
167      * @param y Second vector component.
168      * @param z Third vector component.
169      */
170     private Quaternion(Type type,
171                        final double w,
172                        final double x,
173                        final double y,
174                        final double z) {
175         this.type = type;
176         this.w = w;
177         this.x = x;
178         this.y = y;
179         this.z = z;
180     }
181 
182     /**
183      * Copies the given quaternion, but change its {@link Type}.
184      *
185      * @param type Quaternion type.
186      * @param q Quaternion whose components will be copied.
187      */
188     private Quaternion(Type type,
189                        Quaternion q) {
190         this.type = type;
191         w = q.w;
192         x = q.x;
193         y = q.y;
194         z = q.z;
195     }
196 
197     /**
198      * Builds a quaternion from its components.
199      *
200      * @param w Scalar component.
201      * @param x First vector component.
202      * @param y Second vector component.
203      * @param z Third vector component.
204      * @return a quaternion instance.
205      */
206     public static Quaternion of(final double w,
207                                 final double x,
208                                 final double y,
209                                 final double z) {
210         return new Quaternion(Type.DEFAULT,
211                               w, x, y, z);
212     }
213 
214     /**
215      * Builds a quaternion from scalar and vector parts.
216      *
217      * @param scalar Scalar part of the quaternion.
218      * @param v Components of the vector part of the quaternion.
219      * @return a quaternion instance.
220      *
221      * @throws IllegalArgumentException if the array length is not 3.
222      */
223     public static Quaternion of(final double scalar,
224                                 final double[] v) {
225         if (v.length != VECTOR_DIMENSIONS) {
226             throw new IllegalArgumentException("Size of array must be 3");
227         }
228 
229         return of(scalar, v[0], v[1], v[2]);
230     }
231 
232     /**
233      * Builds a pure quaternion from a vector (assuming that the scalar
234      * part is zero).
235      *
236      * @param v Components of the vector part of the pure quaternion.
237      * @return a quaternion instance.
238      */
239     public static Quaternion of(final double[] v) {
240         return of(0, v);
241     }
242 
243     /**
244      * Returns the conjugate of this quaternion number.
245      * The conjugate of {@code a + bi + cj + dk} is {@code a - bi -cj -dk}.
246      *
247      * @return the conjugate of this quaternion object.
248      */
249     public Quaternion conjugate() {
250         return of(w, -x, -y, -z);
251     }
252 
253     /**
254      * Returns the Hamilton product of two quaternions.
255      *
256      * @param q1 First quaternion.
257      * @param q2 Second quaternion.
258      * @return the product {@code q1} and {@code q2}, in that order.
259      */
260     public static Quaternion multiply(final Quaternion q1,
261                                       final Quaternion q2) {
262         // Components of the first quaternion.
263         final double q1a = q1.w;
264         final double q1b = q1.x;
265         final double q1c = q1.y;
266         final double q1d = q1.z;
267 
268         // Components of the second quaternion.
269         final double q2a = q2.w;
270         final double q2b = q2.x;
271         final double q2c = q2.y;
272         final double q2d = q2.z;
273 
274         // Components of the product.
275         final double w = q1a * q2a - q1b * q2b - q1c * q2c - q1d * q2d;
276         final double x = q1a * q2b + q1b * q2a + q1c * q2d - q1d * q2c;
277         final double y = q1a * q2c - q1b * q2d + q1c * q2a + q1d * q2b;
278         final double z = q1a * q2d + q1b * q2c - q1c * q2b + q1d * q2a;
279 
280         return of(w, x, y, z);
281     }
282 
283     /**
284      * Returns the Hamilton product of the instance by a quaternion.
285      *
286      * @param q Quaternion.
287      * @return the product of this instance with {@code q}, in that order.
288      */
289     public Quaternion multiply(final Quaternion q) {
290         return multiply(this, q);
291     }
292 
293     /**
294      * Computes the sum of two quaternions.
295      *
296      * @param q1 Quaternion.
297      * @param q2 Quaternion.
298      * @return the sum of {@code q1} and {@code q2}.
299      */
300     public static Quaternion add(final Quaternion q1,
301                                  final Quaternion q2) {
302         return of(q1.w + q2.w,
303                   q1.x + q2.x,
304                   q1.y + q2.y,
305                   q1.z + q2.z);
306     }
307 
308     /**
309      * Computes the sum of the instance and another quaternion.
310      *
311      * @param q Quaternion.
312      * @return the sum of this instance and {@code q}.
313      */
314     public Quaternion add(final Quaternion q) {
315         return add(this, q);
316     }
317 
318     /**
319      * Subtracts two quaternions.
320      *
321      * @param q1 First Quaternion.
322      * @param q2 Second quaternion.
323      * @return the difference between {@code q1} and {@code q2}.
324      */
325     public static Quaternion subtract(final Quaternion q1,
326                                       final Quaternion q2) {
327         return of(q1.w - q2.w,
328                   q1.x - q2.x,
329                   q1.y - q2.y,
330                   q1.z - q2.z);
331     }
332 
333     /**
334      * Subtracts a quaternion from the instance.
335      *
336      * @param q Quaternion.
337      * @return the difference between this instance and {@code q}.
338      */
339     public Quaternion subtract(final Quaternion q) {
340         return subtract(this, q);
341     }
342 
343     /**
344      * Computes the dot-product of two quaternions.
345      *
346      * @param q1 Quaternion.
347      * @param q2 Quaternion.
348      * @return the dot product of {@code q1} and {@code q2}.
349      */
350     public static double dot(final Quaternion q1,
351                              final Quaternion q2) {
352         return q1.w * q2.w +
353             q1.x * q2.x +
354             q1.y * q2.y +
355             q1.z * q2.z;
356     }
357 
358     /**
359      * Computes the dot-product of the instance by a quaternion.
360      *
361      * @param q Quaternion.
362      * @return the dot product of this instance and {@code q}.
363      */
364     public double dot(final Quaternion q) {
365         return dot(this, q);
366     }
367 
368     /**
369      * Computes the norm of the quaternion.
370      *
371      * @return the norm.
372      */
373     public double norm() {
374         return type.norm(this);
375     }
376 
377     /**
378      * Computes the square of the norm of the quaternion.
379      *
380      * @return the square of the norm.
381      */
382     public double normSq() {
383         return type.normSq(this);
384     }
385 
386     /**
387      * Computes the normalized quaternion (the versor of the instance).
388      * The norm of the quaternion must not be near zero.
389      *
390      * @return a normalized quaternion.
391      * @throws IllegalStateException if the norm of the quaternion is NaN, infinite,
392      *      or near zero.
393      */
394     public Quaternion normalize() {
395         switch (type) {
396         case NORMALIZED:
397         case POSITIVE_POLAR_FORM:
398             return this;
399         case DEFAULT:
400             final double norm = norm();
401 
402             if (norm < Precision.SAFE_MIN ||
403                 !Double.isFinite(norm)) {
404                 throw new IllegalStateException(ILLEGAL_NORM_MSG + norm);
405             }
406 
407             final Quaternion unit = divide(norm);
408 
409             return w >= 0 ?
410                 new Quaternion(Type.POSITIVE_POLAR_FORM, unit) :
411                 new Quaternion(Type.NORMALIZED, unit);
412         default:
413             throw new IllegalStateException(); // Should never happen.
414         }
415     }
416 
417     /**
418      * {@inheritDoc}
419      */
420     @Override
421     public boolean equals(Object other) {
422         if (this == other) {
423             return true;
424         }
425         if (other instanceof Quaternion) {
426             final Quaternion q = (Quaternion) other;
427             return ((Double) w).equals(q.w) &&
428                 ((Double) x).equals(q.x) &&
429                 ((Double) y).equals(q.y) &&
430                 ((Double) z).equals(q.z);
431         }
432 
433         return false;
434     }
435 
436     /**
437      * {@inheritDoc}
438      */
439     @Override
440     public int hashCode() {
441         return Arrays.hashCode(new double[] {w, x, y, z});
442     }
443 
444     /**
445      * Checks whether this instance is equal to another quaternion
446      * within a given tolerance.
447      *
448      * @param q Quaternion with which to compare the current quaternion.
449      * @param eps Tolerance.
450      * @return {@code true} if the each of the components are equal
451      * within the allowed absolute error.
452      */
453     public boolean equals(final Quaternion q,
454                           final double eps) {
455         return Precision.equals(w, q.w, eps) &&
456             Precision.equals(x, q.x, eps) &&
457             Precision.equals(y, q.y, eps) &&
458             Precision.equals(z, q.z, eps);
459     }
460 
461     /**
462      * Checks whether the instance is a unit quaternion within a given
463      * tolerance.
464      *
465      * @param eps Tolerance (absolute error).
466      * @return {@code true} if the norm is 1 within the given tolerance,
467      * {@code false} otherwise
468      */
469     public boolean isUnit(double eps) {
470         return type.isUnit(this, eps);
471     }
472 
473     /**
474      * Checks whether the instance is a pure quaternion within a given
475      * tolerance.
476      *
477      * @param eps Tolerance (absolute error).
478      * @return {@code true} if the scalar part of the quaternion is zero.
479      */
480     public boolean isPure(double eps) {
481         return Math.abs(w) <= eps;
482     }
483 
484     /**
485      * Returns the polar form of the quaternion.
486      *
487      * @return the unit quaternion with positive scalar part.
488      */
489     public Quaternion positivePolarForm() {
490         switch (type) {
491         case POSITIVE_POLAR_FORM:
492             return this;
493         case NORMALIZED:
494             return w >= 0 ?
495                 new Quaternion(Type.POSITIVE_POLAR_FORM, this) :
496                 new Quaternion(Type.POSITIVE_POLAR_FORM, negate());
497         case DEFAULT:
498             return w >= 0 ?
499                 normalize() :
500                 // The quaternion of rotation (normalized quaternion) q and -q
501                 // are equivalent (i.e. represent the same rotation).
502                 negate().normalize();
503         default:
504             throw new IllegalStateException(); // Should never happen.
505         }
506     }
507 
508     /**
509      * Returns the opposite of this instance.
510      *
511      * @return the quaternion for which all components have an opposite
512      * sign to this one.
513      */
514     public Quaternion negate() {
515         switch (type) {
516         case POSITIVE_POLAR_FORM:
517         case NORMALIZED:
518             return new Quaternion(Type.NORMALIZED, -w, -x, -y, -z);
519         case DEFAULT:
520             return new Quaternion(Type.DEFAULT, -w, -x, -y, -z);
521         default:
522             throw new IllegalStateException(); // Should never happen.
523         }
524     }
525 
526     /**
527      * Returns the inverse of this instance.
528      * The norm of the quaternion must not be zero.
529      *
530      * @return the inverse.
531      * @throws IllegalStateException if the norm (squared) of the quaternion is NaN,
532      *      infinite, or near zero.
533      */
534     public Quaternion inverse() {
535         switch (type) {
536         case POSITIVE_POLAR_FORM:
537         case NORMALIZED:
538             return new Quaternion(type, w, -x, -y, -z);
539         case DEFAULT:
540             final double squareNorm = normSq();
541             if (squareNorm < Precision.SAFE_MIN ||
542                 !Double.isFinite(squareNorm)) {
543                 throw new IllegalStateException(ILLEGAL_NORM_MSG + Math.sqrt(squareNorm));
544             }
545 
546             return of(w / squareNorm,
547                       -x / squareNorm,
548                       -y / squareNorm,
549                       -z / squareNorm);
550         default:
551             throw new IllegalStateException(); // Should never happen.
552         }
553     }
554 
555     /**
556      * Gets the first component of the quaternion (scalar part).
557      *
558      * @return the scalar part.
559      */
560     public double getW() {
561         return w;
562     }
563 
564     /**
565      * Gets the second component of the quaternion (first component
566      * of the vector part).
567      *
568      * @return the first component of the vector part.
569      */
570     public double getX() {
571         return x;
572     }
573 
574     /**
575      * Gets the third component of the quaternion (second component
576      * of the vector part).
577      *
578      * @return the second component of the vector part.
579      */
580     public double getY() {
581         return y;
582     }
583 
584     /**
585      * Gets the fourth component of the quaternion (third component
586      * of the vector part).
587      *
588      * @return the third component of the vector part.
589      */
590     public double getZ() {
591         return z;
592     }
593 
594     /**
595      * Gets the scalar part of the quaternion.
596      *
597      * @return the scalar part.
598      * @see #getW()
599      */
600     public double getScalarPart() {
601         return getW();
602     }
603 
604     /**
605      * Gets the three components of the vector part of the quaternion.
606      *
607      * @return the vector part.
608      * @see #getX()
609      * @see #getY()
610      * @see #getZ()
611      */
612     public double[] getVectorPart() {
613         return new double[] {x, y, z};
614     }
615 
616     /**
617      * Multiplies the instance by a scalar.
618      *
619      * @param alpha Scalar factor.
620      * @return a scaled quaternion.
621      */
622     public Quaternion multiply(final double alpha) {
623         return of(alpha * w,
624                   alpha * x,
625                   alpha * y,
626                   alpha * z);
627     }
628 
629     /**
630      * Divides the instance by a scalar.
631      *
632      * @param alpha Scalar factor.
633      * @return a scaled quaternion.
634      */
635     public Quaternion divide(final double alpha) {
636         return of(w / alpha,
637                   x / alpha,
638                   y / alpha,
639                   z / alpha);
640     }
641 
642     /**
643      * Parses a string that would be produced by {@link #toString()}
644      * and instantiates the corresponding object.
645      *
646      * @param s String representation.
647      * @return an instance.
648      * @throws NumberFormatException if the string does not conform
649      * to the specification.
650      */
651     public static Quaternion parse(String s) {
652         final int startBracket = s.indexOf(FORMAT_START);
653         if (startBracket != 0) {
654             throw new QuaternionParsingException("Expected start string: " + FORMAT_START);
655         }
656         final int len = s.length();
657         final int endBracket = s.indexOf(FORMAT_END);
658         if (endBracket != len - 1) {
659             throw new QuaternionParsingException("Expected end string: " + FORMAT_END);
660         }
661         final String[] elements = s.substring(1, s.length() - 1).split(FORMAT_SEP);
662         if (elements.length != NUMBER_OF_PARTS) {
663             throw new QuaternionParsingException("Incorrect number of parts: Expected 4 but was " +
664                                                  elements.length +
665                                                  " (separator is '" + FORMAT_SEP + "')");
666         }
667 
668         final double a;
669         try {
670             a = Double.parseDouble(elements[0]);
671         } catch (NumberFormatException ex) {
672             throw new QuaternionParsingException("Could not parse scalar part" + elements[0], ex);
673         }
674         final double b;
675         try {
676             b = Double.parseDouble(elements[1]);
677         } catch (NumberFormatException ex) {
678             throw new QuaternionParsingException("Could not parse i part" + elements[1], ex);
679         }
680         final double c;
681         try {
682             c = Double.parseDouble(elements[2]);
683         } catch (NumberFormatException ex) {
684             throw new QuaternionParsingException("Could not parse j part" + elements[2], ex);
685         }
686         final double d;
687         try {
688             d = Double.parseDouble(elements[3]);
689         } catch (NumberFormatException ex) {
690             throw new QuaternionParsingException("Could not parse k part" + elements[3], ex);
691         }
692 
693         return of(a, b, c, d);
694     }
695 
696     /**
697      * {@inheritDoc}
698      */
699     @Override
700     public String toString() {
701         final StringBuilder s = new StringBuilder();
702         s.append(FORMAT_START)
703             .append(w).append(FORMAT_SEP)
704             .append(x).append(FORMAT_SEP)
705             .append(y).append(FORMAT_SEP)
706             .append(z)
707             .append(FORMAT_END);
708 
709         return s.toString();
710     }
711 
712     /** See {@link #parse(String)}. */
713     private static class QuaternionParsingException extends NumberFormatException {
714         /** Serializable version identifier. */
715         private static final long serialVersionUID = 20181128L;
716 
717         /**
718          * @param msg Error message.
719          */
720         QuaternionParsingException(String msg) {
721             super(msg);
722         }
723 
724         /**
725          * @param msg Error message.
726          * @param cause Cause of the exception.
727          */
728         QuaternionParsingException(String msg, Throwable cause) {
729             super(msg);
730             initCause(cause);
731         }
732     }
733 }