View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.statistics.descriptive;
18  
19  import java.util.function.DoubleConsumer;
20  
21  /**
22   * Computes the first moment (arithmetic mean) using the definitional formula:
23   *
24   * <pre>mean = sum(x_i) / n</pre>
25   *
26   * <p> To limit numeric errors, the value of the statistic is computed using the
27   * following recursive updating algorithm:
28   * <ol>
29   * <li>Initialize {@code m = } the first value</li>
30   * <li>For each additional value, update using <br>
31   *   {@code m = m + (new value - m) / (number of observations)}</li>
32   * </ol>
33   *
34   * <p>Returns {@code NaN} if the dataset is empty. Note that
35   * {@code NaN} may also be returned if the input includes {@code NaN} and / or infinite
36   * values of opposite sign.
37   *
38   * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
39   * This implementation does not check for overflow of the count.
40   *
41   * <p><strong>Note that this implementation is not synchronized.</strong> If
42   * multiple threads access an instance of this class concurrently, and at least
43   * one of the threads invokes the {@link java.util.function.DoubleConsumer#accept(double) accept} or
44   * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
45   *
46   * <p>However, it is safe to use {@link java.util.function.DoubleConsumer#accept(double) accept}
47   * and {@link StatisticAccumulator#combine(StatisticResult) combine}
48   * as {@code accumulator} and {@code combiner} functions of
49   * {@link java.util.stream.Collector Collector} on a parallel stream,
50   * because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()}
51   * provides the necessary partitioning, isolation, and merging of results for
52   * safe and efficient parallel execution.
53   *
54   * <p>References:
55   * <ul>
56   *   <li>Chan, Golub, Levesque (1983)
57   *       Algorithms for Computing the Sample Variance.
58   *       American Statistician, vol. 37, no. 3, pp. 242-247.
59   *   <li>Ling (1974)
60   *       Comparison of Several Algorithms for Computing Sample Means and Variances.
61   *       Journal of the American Statistical Association, Vol. 69, No. 348, pp. 859-866.
62   * </ul>
63   *
64   * @since 1.1
65   */
66  class FirstMoment implements DoubleConsumer {
67      /** The downscale constant. Used to avoid overflow for all finite input. */
68      private static final double DOWNSCALE = 0.5;
69      /** The rescale constant. */
70      private static final double RESCALE = 2;
71  
72      /** Count of values that have been added. */
73      protected long n;
74  
75      /**
76       * Half the deviation of most recently added value from the previous first moment.
77       * Retained to prevent repeated computation in higher order moments.
78       *
79       * <p>Note: This is (x - m1) / 2. It is computed as a half value to prevent overflow
80       * when computing for any finite value x and m.
81       *
82       * <p>This value is not used in the {@link #combine(FirstMoment)} method.
83       */
84      protected double dev;
85  
86      /**
87       * Half the deviation of most recently added value from the previous first moment,
88       * normalized by current sample size. Retained to prevent repeated
89       * computation in higher order moments.
90       *
91       * <p>Note: This is (x - m1) / 2n. It is computed as a half value to prevent overflow
92       * when computing for any finite value x and m.
93       *
94       * Note: This value is not used in the {@link #combine(FirstMoment)} method.
95       */
96      protected double nDev;
97  
98      /** First moment of values that have been added.
99       * This is stored as a half value to prevent overflow for any finite input.
100      * Benchmarks show this has negligible performance impact. */
101     private double m1;
102 
103     /**
104      * Running sum of values seen so far.
105      * This is not used in the computation of mean. Used as a return value for first moment when
106      * it is non-finite.
107      */
108     private double nonFiniteValue;
109 
110     /**
111      * Create an instance.
112      */
113     FirstMoment() {
114         // No-op
115     }
116 
117     /**
118      * Copy constructor.
119      *
120      * @param source Source to copy.
121      */
122     FirstMoment(FirstMoment source) {
123         m1 = source.m1;
124         n = source.n;
125         nonFiniteValue = source.nonFiniteValue;
126     }
127 
128     /**
129      * Create an instance with the given first moment.
130      *
131      * <p>This constructor is used when creating the moment from a finite sum of values.
132      *
133      * @param m1 First moment.
134      * @param n Count of values.
135      */
136     FirstMoment(double m1, long n) {
137         this.m1 = m1 * DOWNSCALE;
138         this.n = n;
139     }
140 
141     /**
142      * Returns an instance populated using the input {@code values}.
143      *
144      * <p>Note: {@code FirstMoment} computed using {@link #accept} may be different from
145      * this instance.
146      *
147      * @param values Values.
148      * @return {@code FirstMoment} instance.
149      */
150     static FirstMoment of(double... values) {
151         if (values.length == 0) {
152             return new FirstMoment();
153         }
154         // In the typical use-case a sum of values will not overflow and
155         // is faster than the rolling algorithm
156         return create(org.apache.commons.numbers.core.Sum.of(values), values);
157     }
158 
159     /**
160      * Creates the first moment.
161      *
162      * <p>Uses the provided {@code sum} if finite; otherwise reverts to using the rolling moment
163      * to protect from overflow and adds a second pass correction term.
164      *
165      * <p>This method is used by {@link DoubleStatistics} using a sum that can be reused
166      * for the {@link Sum} statistic.
167      *
168      * @param sum Sum of the values.
169      * @param values Values.
170      * @return {@code FirstMoment} instance.
171      */
172     static FirstMoment create(org.apache.commons.numbers.core.Sum sum, double[] values) {
173         // Protect against empty values
174         if (values.length == 0) {
175             return new FirstMoment();
176         }
177 
178         final double s = sum.getAsDouble();
179         if (Double.isFinite(s)) {
180             return new FirstMoment(s / values.length, values.length);
181         }
182 
183         // "Corrected two-pass algorithm"
184 
185         // First pass
186         final FirstMoment m1 = create(values);
187         final double xbar = m1.getFirstMoment();
188         if (!Double.isFinite(xbar)) {
189             return m1;
190         }
191         // Second pass
192         double correction = 0;
193         for (final double x : values) {
194             correction += x - xbar;
195         }
196         // Note: Correction may be infinite
197         if (Double.isFinite(correction)) {
198             // Down scale the correction to the half representation
199             m1.m1 += DOWNSCALE * correction / values.length;
200         }
201         return m1;
202     }
203 
204     /**
205      * Creates the first moment using a rolling algorithm.
206      *
207      * <p>This duplicates the algorithm in the {@link #accept(double)} method
208      * with optimisations due to the processing of an entire array:
209      * <ul>
210      *  <li>Avoid updating (unused) class level working variables.
211      *  <li>Only computing the non-finite value if required.
212      * </ul>
213      *
214      * @param values Values.
215      * @return the first moment
216      */
217     private static FirstMoment create(double[] values) {
218         double m1 = 0;
219         int n = 0;
220         for (final double x : values) {
221             // Downscale to avoid overflow for all finite input
222             m1 += (x * DOWNSCALE - m1) / ++n;
223         }
224         final FirstMoment m = new FirstMoment();
225         m.n = n;
226         // Note: m1 is already downscaled here
227         m.m1 = m1;
228         // The non-finite value is only relevant if the data contains inf/nan
229         if (!Double.isFinite(m1 * RESCALE)) {
230             m.nonFiniteValue = computeNonFiniteValue(values);
231         }
232         return m;
233     }
234 
235     /**
236      * Compute the result in the event of non-finite values.
237      *
238      * @param values Values.
239      * @return the non-finite result
240      */
241     private static double computeNonFiniteValue(double[] values) {
242         double sum = 0;
243         for (final double x : values) {
244             // Scaling down values prevents overflow of finites.
245             sum += x * Double.MIN_NORMAL;
246         }
247         return sum;
248     }
249 
250     /**
251      * Updates the state of the statistic to reflect the addition of {@code value}.
252      *
253      * @param value Value.
254      */
255     @Override
256     public void accept(double value) {
257         // "Updating one-pass algorithm"
258         // See: Chan et al (1983) Equation 1.3a
259         // m_{i+1} = m_i + (x - m_i) / (i + 1)
260         // This is modified with scaling to avoid overflow for all finite input.
261         // Scaling the input down by a factor of two ensures that the scaling is lossless.
262         // Sub-classes must alter their scaling factors when using the computed deviations.
263 
264         // Note: Maintain the correct non-finite result.
265         // Scaling down values prevents overflow of finites.
266         nonFiniteValue += value * Double.MIN_NORMAL;
267         // Scale down the input
268         dev = value * DOWNSCALE - m1;
269         nDev = dev / ++n;
270         m1 += nDev;
271     }
272 
273     /**
274      * Gets the first moment of all input values.
275      *
276      * <p>When no values have been added, the result is {@code NaN}.
277      *
278      * @return {@code First moment} of all values, if it is finite;
279      *         {@code +/-Infinity}, if infinities of the same sign have been encountered;
280      *         {@code NaN} otherwise.
281      */
282     double getFirstMoment() {
283         // Scale back to the original magnitude
284         final double m = m1 * RESCALE;
285         if (Double.isFinite(m)) {
286             return n == 0 ? Double.NaN : m;
287         }
288         // A non-finite value must have been encountered, return nonFiniteValue which represents m1.
289         return nonFiniteValue;
290     }
291 
292     /**
293      * Combines the state of another {@code FirstMoment} into this one.
294      *
295      * @param other Another {@code FirstMoment} to be combined.
296      * @return {@code this} instance after combining {@code other}.
297      */
298     FirstMoment combine(FirstMoment other) {
299         nonFiniteValue += other.nonFiniteValue;
300         final double mu1 = this.m1;
301         final double mu2 = other.m1;
302         final long n1 = n;
303         final long n2 = other.n;
304         n = n1 + n2;
305         // Adjust the mean with the weighted difference:
306         // m1 = m1 + (m2 - m1) * n2 / (n1 + n2)
307         // The half-representation ensures the difference of means is at most MAX_VALUE
308         // so the combine can avoid scaling.
309         if (n1 == n2) {
310             // Optimisation for equal sizes: m1 = (m1 + m2) / 2
311             m1 = (mu1 + mu2) * 0.5;
312         } else {
313             m1 = combine(mu1, mu2, n1, n2);
314         }
315         return this;
316     }
317 
318     /**
319      * Combine the moments. This method is used to enforce symmetry. It assumes that
320      * the two sizes are not identical, and at least one size is non-zero.
321      *
322      * @param m1 Moment 1.
323      * @param m2 Moment 2.
324      * @param n1 Size of sample 1.
325      * @param n2 Size of sample 2.
326      * @return the combined first moment
327      */
328     private static double combine(double m1, double m2, long n1, long n2) {
329         // Note: If either size is zero the weighted difference is zero and
330         // the other moment is unchanged.
331         return n2 < n1 ?
332             m1 + (m2 - m1) * ((double) n2 / (n1 + n2)) :
333             m2 + (m1 - m2) * ((double) n1 / (n1 + n2));
334     }
335 
336     /**
337      * Gets the difference of the first moment between {@code this} moment and the
338      * {@code other} moment. This is provided for sub-classes.
339      *
340      * @param other Other moment.
341      * @return the difference
342      */
343     double getFirstMomentDifference(FirstMoment other) {
344         // Scale back to the original magnitude
345         return (m1 - other.m1) * RESCALE;
346     }
347 
348     /**
349      * Gets the half the difference of the first moment between {@code this} moment and
350      * the {@code other} moment. This is provided for sub-classes.
351      *
352      * @param other Other moment.
353      * @return the difference
354      */
355     double getFirstMomentHalfDifference(FirstMoment other) {
356         return m1 - other.m1;
357     }
358 }