View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.statistics.descriptive;
18  
19  import java.math.BigInteger;
20  
21  /**
22   * Computes the variance of the available values. The default implementation uses the
23   * following definition of the <em>sample variance</em>:
24   *
25   * <p>\[ \tfrac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2 \]
26   *
27   * <p>where \( \overline{x} \) is the sample mean, and \( n \) is the number of samples.
28   *
29   * <ul>
30   *   <li>The result is {@code NaN} if no values are added.
31   *   <li>The result is zero if there is one value in the data set.
32   * </ul>
33   *
34   * <p>The use of the term \( n − 1 \) is called Bessel's correction. This is an unbiased
35   * estimator of the variance of a hypothetical infinite population. If the
36   * {@link #setBiased(boolean) biased} option is enabled the normalisation factor is
37   * changed to \( \frac{1}{n} \) for a biased estimator of the <em>sample variance</em>.
38   *
39   * <p>The implementation uses an exact integer sum to compute the scaled (by \( n \))
40   * sum of squared deviations from the mean; this is normalised by the scaled correction factor.
41   *
42   * <p>\[ \frac {n \times \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}{n \times (n - 1)} \]
43   *
44   * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
45   * This implementation does not check for overflow of the count.
46   *
47   * <p>This class is designed to work with (though does not require)
48   * {@linkplain java.util.stream streams}.
49   *
50   * <p><strong>This implementation is not thread safe.</strong>
51   * If multiple threads access an instance of this class concurrently,
52   * and at least one of the threads invokes the {@link java.util.function.IntConsumer#accept(int) accept} or
53   * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
54   *
55   * <p>However, it is safe to use {@link java.util.function.IntConsumer#accept(int) accept}
56   * and {@link StatisticAccumulator#combine(StatisticResult) combine}
57   * as {@code accumulator} and {@code combiner} functions of
58   * {@link java.util.stream.Collector Collector} on a parallel stream,
59   * because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()}
60   * provides the necessary partitioning, isolation, and merging of results for
61   * safe and efficient parallel execution.
62   *
63   * @see <a href="https://en.wikipedia.org/wiki/variance">variance (Wikipedia)</a>
64   * @see <a href="https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance">
65   *   Algorithms for computing the variance (Wikipedia)</a>
66   * @see <a href="https://en.wikipedia.org/wiki/Bessel%27s_correction">Bessel&#39;s correction</a>
67   * @since 1.1
68   */
69  public final class IntVariance implements IntStatistic, StatisticAccumulator<IntVariance> {
70      /** Small array sample size.
71       * Used to avoid computing with UInt96 then converting to UInt128. */
72      static final int SMALL_SAMPLE = 10;
73  
74      /** Sum of the squared values. */
75      private final UInt128 sumSq;
76      /** Sum of the values. */
77      private final Int128 sum;
78      /** Count of values that have been added. */
79      private long n;
80  
81      /** Flag to control if the statistic is biased, or should use a bias correction. */
82      private boolean biased;
83  
84      /**
85       * Create an instance.
86       */
87      private IntVariance() {
88          this(UInt128.create(), Int128.create(), 0);
89      }
90  
91      /**
92       * Create an instance.
93       *
94       * @param sumSq Sum of the squared values.
95       * @param sum Sum of the values.
96       * @param n Count of values that have been added.
97       */
98      private IntVariance(UInt128 sumSq, Int128 sum, int n) {
99          this.sumSq = sumSq;
100         this.sum = sum;
101         this.n = n;
102     }
103 
104     /**
105      * Creates an instance.
106      *
107      * <p>The initial result is {@code NaN}.
108      *
109      * @return {@code IntVariance} instance.
110      */
111     public static IntVariance create() {
112         return new IntVariance();
113     }
114 
115     /**
116      * Returns an instance populated using the input {@code values}.
117      *
118      * @param values Values.
119      * @return {@code IntVariance} instance.
120      */
121     public static IntVariance of(int... values) {
122         // Small arrays can be processed using the object
123         if (values.length < SMALL_SAMPLE) {
124             final IntVariance stat = new IntVariance();
125             for (final int x : values) {
126                 stat.accept(x);
127             }
128             return stat;
129         }
130 
131         // Arrays can be processed using specialised counts knowing the maximum limit
132         // for an array is 2^31 values.
133         long s = 0;
134         final UInt96 ss = UInt96.create();
135         // Process pairs as we know two maximum value int^2 will not overflow
136         // an unsigned long.
137         final int end = values.length & ~0x1;
138         for (int i = 0; i < end; i += 2) {
139             final long x = values[i];
140             final long y = values[i + 1];
141             s += x + y;
142             ss.addPositive(x * x + y * y);
143         }
144         if (end < values.length) {
145             final long x = values[end];
146             s += x;
147             ss.addPositive(x * x);
148         }
149 
150         // Convert
151         return new IntVariance(UInt128.of(ss), Int128.of(s), values.length);
152     }
153 
154     /**
155      * Updates the state of the statistic to reflect the addition of {@code value}.
156      *
157      * @param value Value.
158      */
159     @Override
160     public void accept(int value) {
161         sumSq.addPositive((long) value * value);
162         sum.add(value);
163         n++;
164     }
165 
166     /**
167      * Gets the variance of all input values.
168      *
169      * <p>When no values have been added, the result is {@code NaN}.
170      *
171      * @return variance of all values.
172      */
173     @Override
174     public double getAsDouble() {
175         return computeVarianceOrStd(sumSq, sum, n, biased, false);
176     }
177 
178     /**
179      * Compute the variance (or standard deviation).
180      *
181      * <p>The {@code std} flag controls if the result is returned as the standard deviation
182      * using the {@link Math#sqrt(double) square root} function.
183      *
184      * @param sumSq Sum of the squared values.
185      * @param sum Sum of the values.
186      * @param n Count of values that have been added.
187      * @param biased Flag to control if the statistic is biased, or should use a bias correction.
188      * @param std Flag to control if the statistic is the standard deviation.
189      * @return the variance (or standard deviation)
190      */
191     static double computeVarianceOrStd(UInt128 sumSq, Int128 sum, long n, boolean biased, boolean std) {
192         if (n == 0) {
193             return Double.NaN;
194         }
195         // Avoid a divide by zero
196         if (n == 1) {
197             return 0;
198         }
199         // Sum-of-squared deviations: sum(x^2) - sum(x)^2 / n
200         // Sum-of-squared deviations precursor: n * sum(x^2) - sum(x)^2
201         // The precursor is computed in integer precision.
202         // The divide uses double precision.
203         // This ensures we avoid cancellation in the difference and use a fast divide.
204         // The result is limited to by the rounding in the double computation.
205         final double diff = computeSSDevN(sumSq, sum, n);
206         final long n0 = biased ? n : n - 1;
207         final double v = diff / IntMath.unsignedMultiplyToDouble(n, n0);
208         if (std) {
209             return Math.sqrt(v);
210         }
211         return v;
212     }
213 
214     /**
215      * Compute the sum-of-squared deviations multiplied by the count of values:
216      * {@code n * sum(x^2) - sum(x)^2}.
217      *
218      * @param sumSq Sum of the squared values.
219      * @param sum Sum of the values.
220      * @param n Count of values that have been added.
221      * @return the sum-of-squared deviations precursor
222      */
223     private static double computeSSDevN(UInt128 sumSq, Int128 sum, long n) {
224         // Compute the term if possible using fast integer arithmetic.
225         // 128-bit sum(x^2) * n will be OK when the upper 32-bits are zero.
226         // 128-bit sum(x)^2 will be OK when the upper 64-bits are zero.
227         // Both are safe when n < 2^32.
228         if ((n >>> Integer.SIZE) == 0) {
229             return sumSq.unsignedMultiply((int) n).subtract(sum.squareLow()).toDouble();
230         } else {
231             return sumSq.toBigInteger().multiply(BigInteger.valueOf(n))
232                 .subtract(square(sum.toBigInteger())).doubleValue();
233         }
234     }
235 
236     /**
237      * Compute the sum of the squared deviations from the mean.
238      *
239      * <p>This is a helper method used in higher order moments.
240      *
241      * @return the sum of the squared deviations
242      */
243     double computeSumOfSquaredDeviations() {
244         return computeSSDevN(sumSq, sum, n) / n;
245     }
246 
247     /**
248      * Compute the mean.
249      *
250      * <p>This is a helper method used in higher order moments.
251      *
252      * @return the mean
253      */
254     double computeMean() {
255         return IntMean.computeMean(sum, n);
256     }
257 
258     /**
259      * Convenience method to square a BigInteger.
260      *
261      * @param x Value
262      * @return x^2
263      */
264     private static BigInteger square(BigInteger x) {
265         return x.multiply(x);
266     }
267 
268     @Override
269     public IntVariance combine(IntVariance other) {
270         sumSq.add(other.sumSq);
271         sum.add(other.sum);
272         n += other.n;
273         return this;
274     }
275 
276     /**
277      * Sets the value of the biased flag. The default value is {@code false}.
278      *
279      * <p>If {@code false} the sum of squared deviations from the sample mean is normalised by
280      * {@code n - 1} where {@code n} is the number of samples. This is Bessel's correction
281      * for an unbiased estimator of the variance of a hypothetical infinite population.
282      *
283      * <p>If {@code true} the sum of squared deviations is normalised by the number of samples
284      * {@code n}.
285      *
286      * <p>Note: This option only applies when {@code n > 1}. The variance of {@code n = 1} is
287      * always 0.
288      *
289      * <p>This flag only controls the final computation of the statistic. The value of this flag
290      * will not affect compatibility between instances during a {@link #combine(IntVariance) combine}
291      * operation.
292      *
293      * @param v Value.
294      * @return {@code this} instance
295      */
296     public IntVariance setBiased(boolean v) {
297         biased = v;
298         return this;
299     }
300 }