View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.statistics.descriptive;
18  
19  import java.math.BigInteger;
20  
21  /**
22   * Computes the variance of the available values. The default implementation uses the
23   * following definition of the <em>sample variance</em>:
24   *
25   * <p>\[ \tfrac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2 \]
26   *
27   * <p>where \( \overline{x} \) is the sample mean, and \( n \) is the number of samples.
28   *
29   * <ul>
30   *   <li>The result is {@code NaN} if no values are added.
31   *   <li>The result is zero if there is one value in the data set.
32   * </ul>
33   *
34   * <p>The use of the term \( n − 1 \) is called Bessel's correction. This is an unbiased
35   * estimator of the variance of a hypothetical infinite population. If the
36   * {@link #setBiased(boolean) biased} option is enabled the normalisation factor is
37   * changed to \( \frac{1}{n} \) for a biased estimator of the <em>sample variance</em>.
38   *
39   * <p>The implementation uses an exact integer sum to compute the scaled (by \( n \))
40   * sum of squared deviations from the mean; this is normalised by the scaled correction factor.
41   *
42   * <p>\[ \frac {n \times \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}{n \times (n - 1)} \]
43   *
44   * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
45   * This implementation does not check for overflow of the count.
46   *
47   * <p>This class is designed to work with (though does not require)
48   * {@linkplain java.util.stream streams}.
49   *
50   * <p><strong>This implementation is not thread safe.</strong>
51   * If multiple threads access an instance of this class concurrently,
52   * and at least one of the threads invokes the {@link java.util.function.LongConsumer#accept(long) accept} or
53   * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
54   *
55   * <p>However, it is safe to use {@link java.util.function.LongConsumer#accept(long) accept}
56   * and {@link StatisticAccumulator#combine(StatisticResult) combine}
57   * as {@code accumulator} and {@code combiner} functions of
58   * {@link java.util.stream.Collector Collector} on a parallel stream,
59   * because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()}
60   * provides the necessary partitioning, isolation, and merging of results for
61   * safe and efficient parallel execution.
62   *
63   * @see <a href="https://en.wikipedia.org/wiki/variance">variance (Wikipedia)</a>
64   * @see <a href="https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance">
65   *   Algorithms for computing the variance (Wikipedia)</a>
66   * @see <a href="https://en.wikipedia.org/wiki/Bessel%27s_correction">Bessel&#39;s correction</a>
67   * @since 1.1
68   */
69  public final class LongVariance implements LongStatistic, StatisticAccumulator<LongVariance> {
70  
71      /** Sum of the squared values. */
72      private final UInt192 sumSq;
73      /** Sum of the values. */
74      private final Int128 sum;
75      /** Count of values that have been added. */
76      private long n;
77  
78      /** Flag to control if the statistic is biased, or should use a bias correction. */
79      private boolean biased;
80  
81      /**
82       * Create an instance.
83       */
84      private LongVariance() {
85          this(UInt192.create(), Int128.create(), 0);
86      }
87  
88      /**
89       * Create an instance.
90       *
91       * @param sumSq Sum of the squared values.
92       * @param sum Sum of the values.
93       * @param n Count of values that have been added.
94       */
95      private LongVariance(UInt192 sumSq, Int128 sum, int n) {
96          this.sumSq = sumSq;
97          this.sum = sum;
98          this.n = n;
99      }
100 
101     /**
102      * Creates an instance.
103      *
104      * <p>The initial result is {@code NaN}.
105      *
106      * @return {@code LongVariance} instance.
107      */
108     public static LongVariance create() {
109         return new LongVariance();
110     }
111 
112     /**
113      * Returns an instance populated using the input {@code values}.
114      *
115      * @param values Values.
116      * @return {@code LongVariance} instance.
117      */
118     public static LongVariance of(long... values) {
119         // Note: Arrays could be processed using specialised counts knowing the maximum limit
120         // for an array is 2^31 values. Requires a UInt160.
121 
122         final Int128 s = Int128.create();
123         final UInt192 ss = UInt192.create();
124         for (final long x : values) {
125             s.add(x);
126             ss.addSquare(x);
127         }
128         return new LongVariance(ss, s, values.length);
129     }
130 
131     /**
132      * Updates the state of the statistic to reflect the addition of {@code value}.
133      *
134      * @param value Value.
135      */
136     @Override
137     public void accept(long value) {
138         sumSq.addSquare(value);
139         sum.add(value);
140         n++;
141     }
142 
143     /**
144      * Gets the variance of all input values.
145      *
146      * <p>When no values have been added, the result is {@code NaN}.
147      *
148      * @return variance of all values.
149      */
150     @Override
151     public double getAsDouble() {
152         return computeVarianceOrStd(sumSq, sum, n, biased, false);
153     }
154 
155     /**
156      * Compute the variance (or standard deviation).
157      *
158      * <p>The {@code std} flag controls if the result is returned as the standard deviation
159      * using the {@link Math#sqrt(double) square root} function.
160      *
161      * @param sumSq Sum of the squared values.
162      * @param sum Sum of the values.
163      * @param n Count of values that have been added.
164      * @param biased Flag to control if the statistic is biased, or should use a bias correction.
165      * @param std Flag to control if the statistic is the standard deviation.
166      * @return the variance (or standard deviation)
167      */
168     static double computeVarianceOrStd(UInt192 sumSq, Int128 sum, long n, boolean biased, boolean std) {
169         if (n == 0) {
170             return Double.NaN;
171         }
172         // Avoid a divide by zero
173         if (n == 1) {
174             return 0;
175         }
176         // Sum-of-squared deviations: sum(x^2) - sum(x)^2 / n
177         // Sum-of-squared deviations precursor: n * sum(x^2) - sum(x)^2
178         // The precursor is computed in integer precision.
179         // The divide uses double precision.
180         // This ensures we avoid cancellation in the difference and use a fast divide.
181         // The result is limited to by the rounding in the double computation.
182         final double diff = computeSSDevN(sumSq, sum, n);
183         final long n0 = biased ? n : n - 1;
184         final double v = diff / IntMath.unsignedMultiplyToDouble(n, n0);
185         if (std) {
186             return Math.sqrt(v);
187         }
188         return v;
189     }
190 
191     /**
192      * Compute the sum-of-squared deviations multiplied by the count of values:
193      * {@code n * sum(x^2) - sum(x)^2}.
194      *
195      * @param sumSq Sum of the squared values.
196      * @param sum Sum of the values.
197      * @param n Count of values that have been added.
198      * @return the sum-of-squared deviations precursor
199      */
200     private static double computeSSDevN(UInt192 sumSq, Int128 sum, long n) {
201         // Compute the term if possible using fast integer arithmetic.
202         // 192-bit sum(x^2) * n will be OK when the upper 32-bits are zero.
203         // 128-bit sum(x)^2 will be OK when the upper 64-bits are zero.
204         // The first is safe when n < 2^32 but we must check the sum high bits.
205         if (((n >>> Integer.SIZE) | sum.hi64()) == 0) {
206             return sumSq.unsignedMultiply((int) n).subtract(sum.squareLow()).toDouble();
207         } else {
208             return sumSq.toBigInteger().multiply(BigInteger.valueOf(n))
209                 .subtract(square(sum.toBigInteger())).doubleValue();
210         }
211     }
212 
213     /**
214      * Compute the sum of the squared deviations from the mean.
215      *
216      * <p>This is a helper method used in higher order moments.
217      *
218      * @return the sum of the squared deviations
219      */
220     double computeSumOfSquaredDeviations() {
221         return computeSSDevN(sumSq, sum, n) / n;
222     }
223 
224     /**
225      * Compute the mean.
226      *
227      * <p>This is a helper method used in higher order moments.
228      *
229      * @return the mean
230      */
231     double computeMean() {
232         return LongMean.computeMean(sum, n);
233     }
234 
235     /**
236      * Convenience method to square a BigInteger.
237      *
238      * @param x Value
239      * @return x^2
240      */
241     private static BigInteger square(BigInteger x) {
242         return x.multiply(x);
243     }
244 
245     @Override
246     public LongVariance combine(LongVariance other) {
247         sumSq.add(other.sumSq);
248         sum.add(other.sum);
249         n += other.n;
250         return this;
251     }
252 
253     /**
254      * Sets the value of the biased flag. The default value is {@code false}.
255      *
256      * <p>If {@code false} the sum of squared deviations from the sample mean is normalised by
257      * {@code n - 1} where {@code n} is the number of samples. This is Bessel's correction
258      * for an unbiased estimator of the variance of a hypothetical infinite population.
259      *
260      * <p>If {@code true} the sum of squared deviations is normalised by the number of samples
261      * {@code n}.
262      *
263      * <p>Note: This option only applies when {@code n > 1}. The variance of {@code n = 1} is
264      * always 0.
265      *
266      * <p>This flag only controls the final computation of the statistic. The value of this flag
267      * will not affect compatibility between instances during a {@link #combine(LongVariance) combine}
268      * operation.
269      *
270      * @param v Value.
271      * @return {@code this} instance
272      */
273     public LongVariance setBiased(boolean v) {
274         biased = v;
275         return this;
276     }
277 }