View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.statistics.descriptive;
18  
19  /**
20   * Computes the skewness of the available values. The skewness is defined as:
21   *
22   * <p>\[ \gamma_1 = \operatorname{E}\left[ \left(\frac{X-\mu}{\sigma}\right)^3 \right] = \frac{\mu_3}{\sigma^3} \]
23   *
24   * <p>where \( \mu \) is the mean of \( X \), \( \sigma \) is the standard deviation of \( X \),
25   * \( \operatorname{E} \) represents the expectation operator, and \( \mu_3 \) is the third
26   * central moment.
27   *
28   * <p>The default implementation uses the following definition of the <em>sample skewness</em>:
29   *
30   * <p>\[ G_1 = \frac{k_3}{k_2^{3/2}} = \frac{\sqrt{n(n-1)}}{n-2}\; g_1 = \frac{n^2}{(n-1)(n-2)}\;
31   *       \frac{\tfrac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^3}
32   *            {\left[\tfrac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2 \right]^{3/2}} \]
33   *
34   * <p>where \( k_3 \) is the unique symmetric unbiased estimator of the third cumulant,
35   * \( k_2 \) is the symmetric unbiased estimator of the second cumulant (i.e. the <em>sample variance</em>),
36   * \( g_1 \) is a method of moments estimator (see below), \( \overline{x} \) is the sample mean,
37   * and \( n \) is the number of samples.
38   *
39   * <ul>
40   *   <li>The result is {@code NaN} if less than 3 values are added.
41   *   <li>The result is {@code NaN} if any of the values is {@code NaN} or infinite.
42   *   <li>The result is {@code NaN} if the sum of the cubed deviations from the mean is infinite.
43   * </ul>
44   *
45   * <p>The default computation is for the adjusted Fisher–Pearson standardized moment coefficient
46   * \( G_1 \). If the {@link #setBiased(boolean) biased} option is enabled the following equation
47   * applies:
48   *
49   * <p>\[ g_1 = \frac{m_3}{m_2^{3/2}} = \frac{\tfrac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^3}
50   *            {\left[\tfrac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^2 \right]^{3/2}} \]
51   *
52   * <p>where \( g_2 \) is a method of moments estimator,
53   * \( m_3 \) is the (biased) sample third central moment and \( m_2^{3/2} \) is the
54   * (biased) sample second central moment.
55   * <p>In this case the computation only requires 2 values are added (i.e. the result is
56   * {@code NaN} if less than 2 values are added).
57   *
58   * <p>Note that the computation requires division by the second central moment \( m_2 \).
59   * If this is effectively zero then the result is {@code NaN}. This occurs when the value
60   * \( m_2 \) approaches the machine precision of the mean: \( m_2 \le (m_1 \times 10^{-15})^2 \).
61   *
62   * <p>The {@link #accept(double)} method uses a recursive updating algorithm.
63   *
64   * <p>The {@link #of(double...)} method uses a two-pass algorithm, starting with computation
65   * of the mean, and then computing the sum of deviations in a second pass.
66   *
67   * <p>Note that adding values using {@link #accept(double) accept} and then executing
68   * {@link #getAsDouble() getAsDouble} will
69   * sometimes give a different result than executing
70   * {@link #of(double...) of} with the full array of values. The former approach
71   * should only be used when the full array of values is not available.
72   *
73   * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
74   * This implementation does not check for overflow of the count.
75   *
76   * <p>This class is designed to work with (though does not require)
77   * {@linkplain java.util.stream streams}.
78   *
79   * <p><strong>Note that this instance is not synchronized.</strong> If
80   * multiple threads access an instance of this class concurrently, and at least
81   * one of the threads invokes the {@link java.util.function.DoubleConsumer#accept(double) accept} or
82   * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
83   *
84   * <p>However, it is safe to use {@link java.util.function.DoubleConsumer#accept(double) accept}
85   * and {@link StatisticAccumulator#combine(StatisticResult) combine}
86   * as {@code accumulator} and {@code combiner} functions of
87   * {@link java.util.stream.Collector Collector} on a parallel stream,
88   * because the parallel instance of {@link java.util.stream.Stream#collect Stream.collect()}
89   * provides the necessary partitioning, isolation, and merging of results for
90   * safe and efficient parallel execution.
91   *
92   * @see <a href="https://en.wikipedia.org/wiki/Skewness">Skewness (Wikipedia)</a>
93   * @since 1.1
94   */
95  public final class Skewness implements DoubleStatistic, StatisticAccumulator<Skewness> {
96      /** 2, the length limit where the biased skewness is undefined.
97       * This limit effectively imposes the result m3 / m2^1.5 = 0 / 0 = NaN when 1 value
98       * has been added. Note that when more samples are added and the variance
99       * approaches zero the result is also returned as NaN. */
100     private static final int LENGTH_TWO = 2;
101     /** 3, the length limit where the unbiased skewness is undefined. */
102     private static final int LENGTH_THREE = 3;
103 
104     /**
105      * An instance of {@link SumOfCubedDeviations}, which is used to
106      * compute the skewness.
107      */
108     private final SumOfCubedDeviations sc;
109 
110     /** Flag to control if the statistic is biased, or should use a bias correction. */
111     private boolean biased;
112 
113     /**
114      * Create an instance.
115      */
116     private Skewness() {
117         this(new SumOfCubedDeviations());
118     }
119 
120     /**
121      * Creates an instance with the sum of cubed deviations from the mean.
122      *
123      * @param sc Sum of cubed deviations.
124      */
125     Skewness(SumOfCubedDeviations sc) {
126         this.sc = sc;
127     }
128 
129     /**
130      * Creates an instance.
131      *
132      * <p>The initial result is {@code NaN}.
133      *
134      * @return {@code Skewness} instance.
135      */
136     public static Skewness create() {
137         return new Skewness();
138     }
139 
140     /**
141      * Returns an instance populated using the input {@code values}.
142      *
143      * <p>Note: {@code Skewness} computed using {@link #accept(double) accept} may be
144      * different from this instance.
145      *
146      * @param values Values.
147      * @return {@code Skewness} instance.
148      */
149     public static Skewness of(double... values) {
150         return new Skewness(SumOfCubedDeviations.of(values));
151     }
152 
153     /**
154      * Returns an instance populated using the input {@code values}.
155      *
156      * <p>Note: {@code Skewness} computed using {@link #accept(double) accept} may be
157      * different from this instance.
158      *
159      * @param values Values.
160      * @return {@code Skewness} instance.
161      */
162     public static Skewness of(int... values) {
163         return new Skewness(SumOfCubedDeviations.of(values));
164     }
165 
166     /**
167      * Returns an instance populated using the input {@code values}.
168      *
169      * <p>Note: {@code Skewness} computed using {@link #accept(double) accept} may be
170      * different from this instance.
171      *
172      * @param values Values.
173      * @return {@code Skewness} instance.
174      */
175     public static Skewness of(long... values) {
176         return new Skewness(SumOfCubedDeviations.of(values));
177     }
178 
179     /**
180      * Updates the state of the statistic to reflect the addition of {@code value}.
181      *
182      * @param value Value.
183      */
184     @Override
185     public void accept(double value) {
186         sc.accept(value);
187     }
188 
189     /**
190      * Gets the skewness of all input values.
191      *
192      * <p>When fewer than 3 values have been added, the result is {@code NaN}.
193      *
194      * @return skewness of all values.
195      */
196     @Override
197     public double getAsDouble() {
198         // This method checks the sum of squared or cubed deviations is finite
199         // and the value of the biased variance
200         // to provide a consistent result when the computation is not possible.
201 
202         if (sc.n < (biased ? LENGTH_TWO : LENGTH_THREE)) {
203             return Double.NaN;
204         }
205         final double x2 = sc.getSumOfSquaredDeviations();
206         if (!Double.isFinite(x2)) {
207             return Double.NaN;
208         }
209         final double x3 = sc.getSumOfCubedDeviations();
210         if (!Double.isFinite(x3)) {
211             return Double.NaN;
212         }
213         // Avoid a divide by zero; for a negligible variance return NaN.
214         // Note: Commons Math returns zero if variance is < 1e-19.
215         final double m2 = x2 / sc.n;
216         if (Statistics.zeroVariance(sc.getFirstMoment(), m2)) {
217             return Double.NaN;
218         }
219         // denom = pow(m2, 1.5)
220         final double denom = Math.sqrt(m2) * m2;
221         final double m3 = x3 / sc.n;
222         double g1 = m3 / denom;
223         if (!biased) {
224             final double n = sc.n;
225             g1 *= Math.sqrt(n * (n - 1)) / (n - 2);
226         }
227         return g1;
228     }
229 
230     @Override
231     public Skewness combine(Skewness other) {
232         sc.combine(other.sc);
233         return this;
234     }
235 
236     /**
237      * Sets the value of the biased flag. The default value is {@code false}.
238      * See {@link Skewness} for details on the computing algorithm.
239      *
240      * <p>This flag only controls the final computation of the statistic. The value of this flag
241      * will not affect compatibility between instances during a {@link #combine(Skewness) combine}
242      * operation.
243      *
244      * @param v Value.
245      * @return {@code this} instance
246      */
247     public Skewness setBiased(boolean v) {
248         biased = v;
249         return this;
250     }
251 }