Class FDistribution
- java.lang.Object
-
- org.apache.commons.statistics.distribution.FDistribution
-
- All Implemented Interfaces:
ContinuousDistribution
public final class FDistribution extends Object
Implementation of the F-distribution.The probability density function of \( X \) is:
\[ \begin{aligned} f(x; n, m) &= \frac{1}{\operatorname{B}\left(\frac{n}{2},\frac{m}{2}\right)} \left(\frac{n}{m}\right)^{n/2} x^{n/2 - 1} \left(1+\frac{n}{m} \, x \right)^{-(n+m)/2} \\ &= \frac{n^{\frac n 2} m^{\frac m 2} x^{\frac{n}{2}-1} }{ (nx+m)^{\frac{(n+m)}{2}} \operatorname{B}\left(\frac{n}{2},\frac{m}{2}\right)} \end{aligned} \]
for \( n, m > 0 \) the degrees of freedom, \( \operatorname{B}(a, b) \) is the beta function, and \( x \in [0, \infty) \).
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from interface org.apache.commons.statistics.distribution.ContinuousDistribution
ContinuousDistribution.Sampler
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description ContinuousDistribution.Sampler
createSampler(org.apache.commons.rng.UniformRandomProvider rng)
Creates a sampler.double
cumulativeProbability(double x)
For a random variableX
whose values are distributed according to this distribution, this method returnsP(X <= x)
.double
density(double x)
Returns the probability density function (PDF) of this distribution evaluated at the specified pointx
.double
getDenominatorDegreesOfFreedom()
Gets the denominator degrees of freedom parameter of this distribution.double
getMean()
Gets the mean of this distribution.double
getNumeratorDegreesOfFreedom()
Gets the numerator degrees of freedom parameter of this distribution.double
getSupportLowerBound()
Gets the lower bound of the support.double
getSupportUpperBound()
Gets the upper bound of the support.double
getVariance()
Gets the variance of this distribution.double
inverseCumulativeProbability(double p)
Computes the quantile function of this distribution.double
inverseSurvivalProbability(double p)
Computes the inverse survival probability function of this distribution.double
logDensity(double x)
Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified pointx
.static FDistribution
of(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom)
Creates an F-distribution.double
probability(double x0, double x1)
For a random variableX
whose values are distributed according to this distribution, this method returnsP(x0 < X <= x1)
.double
survivalProbability(double x)
For a random variableX
whose values are distributed according to this distribution, this method returnsP(X > x)
.
-
-
-
Method Detail
-
of
public static FDistribution of(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom)
Creates an F-distribution.- Parameters:
numeratorDegreesOfFreedom
- Numerator degrees of freedom.denominatorDegreesOfFreedom
- Denominator degrees of freedom.- Returns:
- the distribution
- Throws:
IllegalArgumentException
- ifnumeratorDegreesOfFreedom <= 0
ordenominatorDegreesOfFreedom <= 0
.
-
getNumeratorDegreesOfFreedom
public double getNumeratorDegreesOfFreedom()
Gets the numerator degrees of freedom parameter of this distribution.- Returns:
- the numerator degrees of freedom.
-
getDenominatorDegreesOfFreedom
public double getDenominatorDegreesOfFreedom()
Gets the denominator degrees of freedom parameter of this distribution.- Returns:
- the denominator degrees of freedom.
-
density
public double density(double x)
Returns the probability density function (PDF) of this distribution evaluated at the specified pointx
. In general, the PDF is the derivative of the CDF. If the derivative does not exist atx
, then an appropriate replacement should be returned, e.g.Double.POSITIVE_INFINITY
,Double.NaN
, or the limit inferior or limit superior of the difference quotient.Returns the limit when
x = 0
:df1 < 2
: Infinitydf1 == 2
: 1df1 > 2
: 0
Where
df1
is the numerator degrees of freedom.- Parameters:
x
- Point at which the PDF is evaluated.- Returns:
- the value of the probability density function at
x
.
-
logDensity
public double logDensity(double x)
Returns the natural logarithm of the probability density function (PDF) of this distribution evaluated at the specified pointx
.Returns the limit when
x = 0
:df1 < 2
: Infinitydf1 == 2
: 0df1 > 2
: -Infinity
Where
df1
is the numerator degrees of freedom.- Parameters:
x
- Point at which the PDF is evaluated.- Returns:
- the logarithm of the value of the probability density function
at
x
.
-
cumulativeProbability
public double cumulativeProbability(double x)
For a random variableX
whose values are distributed according to this distribution, this method returnsP(X <= x)
. In other words, this method represents the (cumulative) distribution function (CDF) for this distribution.- Parameters:
x
- Point at which the CDF is evaluated.- Returns:
- the probability that a random variable with this
distribution takes a value less than or equal to
x
.
-
survivalProbability
public double survivalProbability(double x)
For a random variableX
whose values are distributed according to this distribution, this method returnsP(X > x)
. In other words, this method represents the complementary cumulative distribution function.By default, this is defined as
1 - cumulativeProbability(x)
, but the specific implementation may be more accurate.- Parameters:
x
- Point at which the survival function is evaluated.- Returns:
- the probability that a random variable with this
distribution takes a value greater than
x
.
-
getMean
public double getMean()
Gets the mean of this distribution.For denominator degrees of freedom parameter \( m \), the mean is:
\[ \mathbb{E}[X] = \begin{cases} \frac{m}{m-2} & \text{for } m \gt 2 \\ \text{undefined} & \text{otherwise} \end{cases} \]
- Returns:
- the mean, or
NaN
if it is not defined.
-
getVariance
public double getVariance()
Gets the variance of this distribution.For numerator degrees of freedom parameter \( n \) and denominator degrees of freedom parameter \( m \), the variance is:
\[ \operatorname{var}[X] = \begin{cases} \frac{2m^2 (n+m-2)}{n (m-2)^2 (m-4)} & \text{for } m \gt 4 \\ \text{undefined} & \text{otherwise} \end{cases} \]
- Returns:
- the variance, or
NaN
if it is not defined.
-
getSupportLowerBound
public double getSupportLowerBound()
Gets the lower bound of the support. It must return the same value asinverseCumulativeProbability(0)
, i.e. \( \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} \).The lower bound of the support is always 0.
- Returns:
- 0.
-
getSupportUpperBound
public double getSupportUpperBound()
Gets the upper bound of the support. It must return the same value asinverseCumulativeProbability(1)
, i.e. \( \inf \{ x \in \mathbb R : P(X \le x) = 1 \} \).The upper bound of the support is always positive infinity.
- Returns:
- positive infinity.
-
probability
public double probability(double x0, double x1)
For a random variableX
whose values are distributed according to this distribution, this method returnsP(x0 < X <= x1)
. The default implementation uses the identityP(x0 < X <= x1) = P(X <= x1) - P(X <= x0)
- Specified by:
probability
in interfaceContinuousDistribution
- Parameters:
x0
- Lower bound (exclusive).x1
- Upper bound (inclusive).- Returns:
- the probability that a random variable with this distribution
takes a value between
x0
andx1
, excluding the lower and including the upper endpoint.
-
inverseCumulativeProbability
public double inverseCumulativeProbability(double p)
Computes the quantile function of this distribution. For a random variableX
distributed according to this distribution, the returned value is:\[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \le x) \ge p\} & \text{for } 0 \lt p \le 1 \\ \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} & \text{for } p = 0 \end{cases} \]
The default implementation returns:
ContinuousDistribution.getSupportLowerBound()
forp = 0
,ContinuousDistribution.getSupportUpperBound()
forp = 1
, or- the result of a search for a root between the lower and upper bound using
cumulativeProbability(x) - p
. The bounds may be bracketed for efficiency.
- Specified by:
inverseCumulativeProbability
in interfaceContinuousDistribution
- Parameters:
p
- Cumulative probability.- Returns:
- the smallest
p
-quantile of this distribution (largest 0-quantile forp = 0
). - Throws:
IllegalArgumentException
- ifp < 0
orp > 1
-
inverseSurvivalProbability
public double inverseSurvivalProbability(double p)
Computes the inverse survival probability function of this distribution. For a random variableX
distributed according to this distribution, the returned value is:\[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \gt x) \le p\} & \text{for } 0 \le p \lt 1 \\ \inf \{ x \in \mathbb R : P(X \gt x) \lt 1 \} & \text{for } p = 1 \end{cases} \]
By default, this is defined as
inverseCumulativeProbability(1 - p)
, but the specific implementation may be more accurate.The default implementation returns:
ContinuousDistribution.getSupportLowerBound()
forp = 1
,ContinuousDistribution.getSupportUpperBound()
forp = 0
, or- the result of a search for a root between the lower and upper bound using
survivalProbability(x) - p
. The bounds may be bracketed for efficiency.
- Specified by:
inverseSurvivalProbability
in interfaceContinuousDistribution
- Parameters:
p
- Survival probability.- Returns:
- the smallest
(1-p)
-quantile of this distribution (largest 0-quantile forp = 1
). - Throws:
IllegalArgumentException
- ifp < 0
orp > 1
-
createSampler
public ContinuousDistribution.Sampler createSampler(org.apache.commons.rng.UniformRandomProvider rng)
Creates a sampler.- Specified by:
createSampler
in interfaceContinuousDistribution
- Parameters:
rng
- Generator of uniformly distributed numbers.- Returns:
- a sampler that produces random numbers according this distribution.
-
-