View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.text.similarity;
18  
19  import java.util.Arrays;
20  
21  /**
22   * An algorithm for measuring the difference between two character sequences.
23   *
24   * <p>
25   * This is the number of changes needed to change one sequence into another, where each change is a single character modification (deletion, insertion or
26   * substitution).
27   * </p>
28   * <p>
29   * This code has been adapted from Apache Commons Lang 3.3.
30   * </p>
31   *
32   * @since 1.0
33   */
34  public class LevenshteinDistance implements EditDistance<Integer> {
35  
36      /**
37       * Singleton instance.
38       */
39      private static final LevenshteinDistance INSTANCE = new LevenshteinDistance();
40  
41      /**
42       * Gets the default instance.
43       *
44       * @return The default instance
45       */
46      public static LevenshteinDistance getDefaultInstance() {
47          return INSTANCE;
48      }
49  
50      /**
51       * Find the Levenshtein distance between two CharSequences if it's less than or equal to a given threshold.
52       *
53       * <p>
54       * This implementation follows from Algorithms on Strings, Trees and Sequences by Dan Gusfield and Chas Emerick's implementation of the Levenshtein distance
55       * algorithm from <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a>
56       * </p>
57       *
58       * <pre>
59       * limitedCompare(null, *, *)             = IllegalArgumentException
60       * limitedCompare(*, null, *)             = IllegalArgumentException
61       * limitedCompare(*, *, -1)               = IllegalArgumentException
62       * limitedCompare("","", 0)               = 0
63       * limitedCompare("aaapppp", "", 8)       = 7
64       * limitedCompare("aaapppp", "", 7)       = 7
65       * limitedCompare("aaapppp", "", 6))      = -1
66       * limitedCompare("elephant", "hippo", 7) = 7
67       * limitedCompare("elephant", "hippo", 6) = -1
68       * limitedCompare("hippo", "elephant", 7) = 7
69       * limitedCompare("hippo", "elephant", 6) = -1
70       * </pre>
71       *
72       * @param left      the first SimilarityInput, must not be null
73       * @param right     the second SimilarityInput, must not be null
74       * @param threshold the target threshold, must not be negative
75       * @return result distance, or -1
76       */
77      private static <E> int limitedCompare(SimilarityInput<E> left, SimilarityInput<E> right, final int threshold) { // NOPMD
78          if (left == null || right == null) {
79              throw new IllegalArgumentException("CharSequences must not be null");
80          }
81          if (threshold < 0) {
82              throw new IllegalArgumentException("Threshold must not be negative");
83          }
84  
85          /*
86           * This implementation only computes the distance if it's less than or equal to the threshold value, returning -1 if it's greater. The advantage is
87           * performance: unbounded distance is O(nm), but a bound of k allows us to reduce it to O(km) time by only computing a diagonal stripe of width 2k + 1
88           * of the cost table. It is also possible to use this to compute the unbounded Levenshtein distance by starting the threshold at 1 and doubling each
89           * time until the distance is found; this is O(dm), where d is the distance.
90           *
91           * One subtlety comes from needing to ignore entries on the border of our stripe eg. p[] = |#|#|#|* d[] = *|#|#|#| We must ignore the entry to the left
92           * of the leftmost member We must ignore the entry above the rightmost member
93           *
94           * Another subtlety comes from our stripe running off the matrix if the strings aren't of the same size. Since string s is always swapped to be the
95           * shorter of the two, the stripe will always run off to the upper right instead of the lower left of the matrix.
96           *
97           * As a concrete example, suppose s is of length 5, t is of length 7, and our threshold is 1. In this case we're going to walk a stripe of length 3. The
98           * matrix would look like so:
99           *
100          * <pre> 1 2 3 4 5 1 |#|#| | | | 2 |#|#|#| | | 3 | |#|#|#| | 4 | | |#|#|#| 5 | | | |#|#| 6 | | | | |#| 7 | | | | | | </pre>
101          *
102          * Note how the stripe leads off the table as there is no possible way to turn a string of length 5 into one of length 7 in edit distance of 1.
103          *
104          * Additionally, this implementation decreases memory usage by using two single-dimensional arrays and swapping them back and forth instead of
105          * allocating an entire n by m matrix. This requires a few minor changes, such as immediately returning when it's detected that the stripe has run off
106          * the matrix and initially filling the arrays with large values so that entries we don't compute are ignored.
107          *
108          * See Algorithms on Strings, Trees and Sequences by Dan Gusfield for some discussion.
109          */
110 
111         int n = left.length(); // length of left
112         int m = right.length(); // length of right
113 
114         // if one string is empty, the edit distance is necessarily the length
115         // of the other
116         if (n == 0) {
117             return m <= threshold ? m : -1;
118         }
119         if (m == 0) {
120             return n <= threshold ? n : -1;
121         }
122 
123         if (n > m) {
124             // swap the two strings to consume less memory
125             final SimilarityInput<E> tmp = left;
126             left = right;
127             right = tmp;
128             n = m;
129             m = right.length();
130         }
131 
132         // the edit distance cannot be less than the length difference
133         if (m - n > threshold) {
134             return -1;
135         }
136 
137         int[] p = new int[n + 1]; // 'previous' cost array, horizontally
138         int[] d = new int[n + 1]; // cost array, horizontally
139         int[] tempD; // placeholder to assist in swapping p and d
140 
141         // fill in starting table values
142         final int boundary = Math.min(n, threshold) + 1;
143         for (int i = 0; i < boundary; i++) {
144             p[i] = i;
145         }
146         // these fills ensure that the value above the rightmost entry of our
147         // stripe will be ignored in following loop iterations
148         Arrays.fill(p, boundary, p.length, Integer.MAX_VALUE);
149         Arrays.fill(d, Integer.MAX_VALUE);
150 
151         // iterates through t
152         for (int j = 1; j <= m; j++) {
153             final E rightJ = right.at(j - 1); // jth character of right
154             d[0] = j;
155 
156             // compute stripe indices, constrain to array size
157             final int min = Math.max(1, j - threshold);
158             final int max = j > Integer.MAX_VALUE - threshold ? n : Math.min(n, j + threshold);
159 
160             // ignore entry left of leftmost
161             if (min > 1) {
162                 d[min - 1] = Integer.MAX_VALUE;
163             }
164 
165             int lowerBound = Integer.MAX_VALUE;
166             // iterates through [min, max] in s
167             for (int i = min; i <= max; i++) {
168                 if (left.at(i - 1).equals(rightJ)) {
169                     // diagonally left and up
170                     d[i] = p[i - 1];
171                 } else {
172                     // 1 + minimum of cell to the left, to the top, diagonally
173                     // left and up
174                     d[i] = 1 + Math.min(Math.min(d[i - 1], p[i]), p[i - 1]);
175                 }
176                 lowerBound = Math.min(lowerBound, d[i]);
177             }
178             // if the lower bound is greater than the threshold, then exit early
179             if (lowerBound > threshold) {
180                 return -1;
181             }
182 
183             // copy current distance counts to 'previous row' distance counts
184             tempD = p;
185             p = d;
186             d = tempD;
187         }
188 
189         // if p[n] is greater than the threshold, there's no guarantee on it
190         // being the correct
191         // distance
192         if (p[n] <= threshold) {
193             return p[n];
194         }
195         return -1;
196     }
197 
198     /**
199      * Finds the Levenshtein distance between two Strings.
200      *
201      * <p>
202      * A higher score indicates a greater distance.
203      * </p>
204      *
205      * <p>
206      * The previous implementation of the Levenshtein distance algorithm was from
207      * <a href="https://web.archive.org/web/20120526085419/http://www.merriampark.com/ldjava.htm">
208      * https://web.archive.org/web/20120526085419/http://www.merriampark.com/ldjava.htm</a>
209      * </p>
210      *
211      * <p>
212      * This implementation only need one single-dimensional arrays of length s.length() + 1
213      * </p>
214      *
215      * <pre>
216      * unlimitedCompare(null, *)             = IllegalArgumentException
217      * unlimitedCompare(*, null)             = IllegalArgumentException
218      * unlimitedCompare("","")               = 0
219      * unlimitedCompare("","a")              = 1
220      * unlimitedCompare("aaapppp", "")       = 7
221      * unlimitedCompare("frog", "fog")       = 1
222      * unlimitedCompare("fly", "ant")        = 3
223      * unlimitedCompare("elephant", "hippo") = 7
224      * unlimitedCompare("hippo", "elephant") = 7
225      * unlimitedCompare("hippo", "zzzzzzzz") = 8
226      * unlimitedCompare("hello", "hallo")    = 1
227      * </pre>
228      *
229      * @param left  the first CharSequence, must not be null
230      * @param right the second CharSequence, must not be null
231      * @return result distance, or -1
232      * @throws IllegalArgumentException if either CharSequence input is {@code null}
233      */
234     private static <E> int unlimitedCompare(SimilarityInput<E> left, SimilarityInput<E> right) {
235         if (left == null || right == null) {
236             throw new IllegalArgumentException("CharSequences must not be null");
237         }
238         /*
239          * This implementation use two variable to record the previous cost counts, So this implementation use less memory than previous impl.
240          */
241         int n = left.length(); // length of left
242         int m = right.length(); // length of right
243 
244         if (n == 0) {
245             return m;
246         }
247         if (m == 0) {
248             return n;
249         }
250         if (n > m) {
251             // swap the input strings to consume less memory
252             final SimilarityInput<E> tmp = left;
253             left = right;
254             right = tmp;
255             n = m;
256             m = right.length();
257         }
258         final int[] p = new int[n + 1];
259         // indexes into strings left and right
260         int i; // iterates through left
261         int j; // iterates through right
262         int upperLeft;
263         int upper;
264         E rightJ; // jth character of right
265         int cost; // cost
266         for (i = 0; i <= n; i++) {
267             p[i] = i;
268         }
269         for (j = 1; j <= m; j++) {
270             upperLeft = p[0];
271             rightJ = right.at(j - 1);
272             p[0] = j;
273 
274             for (i = 1; i <= n; i++) {
275                 upper = p[i];
276                 cost = left.at(i - 1).equals(rightJ) ? 0 : 1;
277                 // minimum of cell to the left+1, to the top+1, diagonally left and up +cost
278                 p[i] = Math.min(Math.min(p[i - 1] + 1, p[i] + 1), upperLeft + cost);
279                 upperLeft = upper;
280             }
281         }
282         return p[n];
283     }
284 
285     /**
286      * Threshold.
287      */
288     private final Integer threshold;
289 
290     /**
291      * This returns the default instance that uses a version of the algorithm that does not use a threshold parameter.
292      *
293      * @see LevenshteinDistance#getDefaultInstance()
294      * @deprecated Use {@link #getDefaultInstance()}.
295      */
296     @Deprecated
297     public LevenshteinDistance() {
298         this(null);
299     }
300 
301     /**
302      * If the threshold is not null, distance calculations will be limited to a maximum length. If the threshold is null, the unlimited version of the algorithm
303      * will be used.
304      *
305      * @param threshold If this is null then distances calculations will not be limited. This may not be negative.
306      */
307     public LevenshteinDistance(final Integer threshold) {
308         if (threshold != null && threshold < 0) {
309             throw new IllegalArgumentException("Threshold must not be negative");
310         }
311         this.threshold = threshold;
312     }
313 
314     /**
315      * Computes the Levenshtein distance between two Strings.
316      *
317      * <p>
318      * A higher score indicates a greater distance.
319      * </p>
320      *
321      * <p>
322      * The previous implementation of the Levenshtein distance algorithm was from
323      * <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a>
324      * </p>
325      *
326      * <p>
327      * Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError which can occur when my Java implementation is used with very large
328      * strings.<br>
329      * This implementation of the Levenshtein distance algorithm is from
330      * <a href="http://www.merriampark.com/ldjava.htm">http://www.merriampark.com/ldjava.htm</a>
331      * </p>
332      *
333      * <pre>
334      * distance.apply(null, *)             = IllegalArgumentException
335      * distance.apply(*, null)             = IllegalArgumentException
336      * distance.apply("","")               = 0
337      * distance.apply("","a")              = 1
338      * distance.apply("aaapppp", "")       = 7
339      * distance.apply("frog", "fog")       = 1
340      * distance.apply("fly", "ant")        = 3
341      * distance.apply("elephant", "hippo") = 7
342      * distance.apply("hippo", "elephant") = 7
343      * distance.apply("hippo", "zzzzzzzz") = 8
344      * distance.apply("hello", "hallo")    = 1
345      * </pre>
346      *
347      * @param left  the first input, must not be null
348      * @param right the second input, must not be null
349      * @return result distance, or -1
350      * @throws IllegalArgumentException if either String input {@code null}
351      */
352     @Override
353     public Integer apply(final CharSequence left, final CharSequence right) {
354         return apply(SimilarityInput.input(left), SimilarityInput.input(right));
355     }
356 
357     /**
358      * Computes the Levenshtein distance between two inputs.
359      *
360      * <p>
361      * A higher score indicates a greater distance.
362      * </p>
363      *
364      * <pre>
365      * distance.apply(null, *)             = IllegalArgumentException
366      * distance.apply(*, null)             = IllegalArgumentException
367      * distance.apply("","")               = 0
368      * distance.apply("","a")              = 1
369      * distance.apply("aaapppp", "")       = 7
370      * distance.apply("frog", "fog")       = 1
371      * distance.apply("fly", "ant")        = 3
372      * distance.apply("elephant", "hippo") = 7
373      * distance.apply("hippo", "elephant") = 7
374      * distance.apply("hippo", "zzzzzzzz") = 8
375      * distance.apply("hello", "hallo")    = 1
376      * </pre>
377      *
378      * @param <E>   The type of similarity score unit.
379      * @param left  the first input, must not be null.
380      * @param right the second input, must not be null.
381      * @return result distance, or -1.
382      * @throws IllegalArgumentException if either String input {@code null}.
383      * @since 1.13.0
384      */
385     public <E> Integer apply(final SimilarityInput<E> left, final SimilarityInput<E> right) {
386         if (threshold != null) {
387             return limitedCompare(left, right, threshold);
388         }
389         return unlimitedCompare(left, right);
390     }
391 
392     /**
393      * Gets the distance threshold.
394      *
395      * @return The distance threshold
396      */
397     public Integer getThreshold() {
398         return threshold;
399     }
400 
401 }